
Programming
Fundamentals

@balietti | stefanobalietti.com | @nodegameorg | nodegame.org

Stefano Balietti
Center for European Social Science Research at Mannheim University (MZES)
Alfred-Weber Institute of Economics at Heidelberg University

Building Digital Skills: 12-13 March 2020, University of Luzern

Currently

• Fellow in Sociology Mannheim Center for European Social Research (MZES)

• Postdoc at the Alfred Weber Institute of Economics at Heidelberg University

Previously

o Microsoft Research - Computational Social Science New York City

o Postdoc Network Science Institute, Northeastern University

o Fellow IQSS, Harvard University

o PhD, Postdoc, Computational Social Science, ETH Zurich

http://stefanobalietti.com

Your Instructor: Stefano Balietti

http://stefanobalietti.com/

My Methodology

Experimental
Methods

Interface of computer science, sociology, and economics

Experimental
Methods

Agent-
Based

Models

Interface of computer science, sociology, and economics

My Methodology

Experimental
Methods

Agent-
Based

Models

Social Network
Analysis

Interface of computer science, sociology, and economics

My Methodology

Experimental
Methods

Agent-
Based

Models

Machine Learning
for Optimal

Experimental
Design

Social Network
Analysis

Interface of computer science, sociology, and economics

My Methodology

Vision

Simulating Societal Processes in Virtual Labs

⚫ Consensus, social influence, and polarization

⚫ Group fairness, inequality, redistribution

⚫ Incentives schemes for collective intelligence

⚫ Optimal experimental design

Building Platforms

Garch-in-Gretl (GiG) for
econometrics Gretl
software

Patterns Configuration Module
for Drupal Web Content
Management System

www.nodegame.org

v5

Fast, scalable JavaScript for large-scale

real-time online experiments

2,622 active users, 30,448 downloads
~5000 weekly downloads

1. General programming notions: variables, data structures,
operators, conditional logic, and recursion.

2. Object oriented programming: classes, objects, interfaces and
inheritance, encapsulation, and abstraction.

3. Writing high-quality code: well-establish design patterns,
unit-testing, linting, documentation, version control system Git
and GitHub, and continuous integration.

Goals of the Seminar:
Fundamentals of Programming

Half Days

Get the Certificate If Attending

Half Days

Get the Certificate If Attending

Half Days

Get the Certificate If Attending

Half Days

Maximize Personal Knowledge

Learning Curve

https://en.wikipedia.org/wiki/Hype_cycleAdapted from:

Half Day 2

Half Day 1

Half Day 3

Half Day 4

CONFIDENCE
IN JAVASCRIPT
PROGRAMMING

https://en.wikipedia.org/wiki/Hype_cycle

Learning Curve

https://en.wikipedia.org/wiki/Hype_cycleAdapted from:

Half Day 2

Half Day 1

Half Day 3

Half Day 4

CONFIDENCE
IN JAVASCRIPT
PROGRAMMING

App
Development!

https://en.wikipedia.org/wiki/Hype_cycle

1. Web App: the golden triad: HTML, CSS, and JavaScript; asynchronous
programming, Node.JS and NPM, REST API calls; introduction to Web
frameworks: JQuery, Twitter Bootstrap, SASS; cloud providers.

1. Mobile App: transform the Web App into a Mobile App with Apache Cordova
(https://cordova.apache.org)

2. Browser Extension: create a simple Chrome-based extension
(https://developer.chrome.com/extensions)

3. Behavioral Experiment: create a simple game theory experiment with the
nodeGame platform (https://nodegame.org).

4. Decentralized App: Introduction to Solidity (JavaScript-based language) to
program blockchain applications on the Ethereum platform
(https://ethereum.org)

This Seminar is Preparatory for the Next One:
App Development

https://cordova.apache.org/
https://developer.chrome.com/extensions
https://nodegame.org/
https://ethereum.org/

1. Web App: the golden triad: HTML, CSS, and JavaScript; asynchronous
programming, Node.JS and NPM, REST API calls; introduction to Web
frameworks: JQuery, Twitter Bootstrap, SASS; cloud providers.

1. Mobile App: transform the Web App into a Mobile App with Apache Cordova
(https://cordova.apache.org)

2. Browser Extension: create a simple Chrome-based extension
(https://developer.chrome.com/extensions)

3. Behavioral Experiment: create a simple game theory experiment with the
nodeGame platform (https://nodegame.org).

4. Decentralized App: Introduction to Solidity (JavaScript-based language) to
program blockchain applications on the Ethereum platform
(https://ethereum.org)

This Seminar is Preparatory for the Next One:
App Development

https://cordova.apache.org/
https://developer.chrome.com/extensions
https://nodegame.org/
https://ethereum.org/

Programming Fundamentals for You

• Briefly introduce yourself

• What is your level of computer programming?

• Do you know JavaScript already?

• What are you looking to learn in this course?

What is JavaScript?

What is JavaScript?

• JavaScript is NOT Java, similar names, but for the
rest rather different

• JAVA is a compiled language and while JavaScript is
interpreted

• JAVA is generally more complex

• JAVA is fading (?)
https://www.xkcd.com/378/

Let's Start with What is NOT

https://www.xkcd.com/378/

What is JavaScript?

• It is at the core of Web technologies,
with HTML and CSS

• It is what makes the pages interactive

• JavaScript is high-level, scripted,
and multi-paradigm.

• It has prototypical object-orientation
and curly-bracket syntax

• It is dynamically typed

• It has first-class functions

What is JavaScript?

• It is at the core of Web technologies,
with HTML and CSS

• It is what makes the pages interactive

• JavaScript is high-level, scripted,
and multi-paradigm.

• It has prototypical object-orientation
and curly-bracket syntax

• It is dynamically typed

• It has first-class functions

JavaScript History

⚫ JavaScript was developed in May 1995 by
Brendan Eich for Netscape Communications Corp

⚫ Was created in 10 days in order to
accommodate the Navigator 2.0 Beta release

⚫ Initially called Mocha, later renamed LiveScript in
September, and later JavaScript in the same month

JavaScript

https://en.wikipedia.org/wiki/Brendan_Eich

https://en.wikipedia.org/wiki/Brendan_Eich

JavaScript History

⚫ Microsoft introduced JScript as reverse-engineered implementation of
Netscape's JavaScript in 1996 in Internet Explorer 3

⚫ In 1996 Netscape submitted JavaScript to European Computer
Manufacturers Association (ECMA) to create and industry standard

⚫ In 1997 ECMAScript was released

⚫ Between 1997 and 2009 5 standard have been released

⚫ July 2015 ECMASCRIPT V6 released.

JavaScript

JavaScript History

• ES2016 a.k.a. ES7

• ES2017 a.k.a. ES8

• ES2018 a.k.a. ES9

• ES2019 a.k.a. ES10

• ES2020 a.k.a. ES11

JavaScript Is Constantly Updated

https://medium.com/better-programming/javascript-es2016-features-with-examples-a41b7aead589
https://medium.com/better-programming/javascript-es2017-features-with-examples-877f8406e770
https://medium.com/better-programming/javascript-es2018-features-with-examples-30fda8ac50fa
https://medium.com/better-programming/twelve-es10-features-in-twelve-simple-examples-6e8cc109f3d3
https://medium.com/better-programming/javascript-es2020-features-with-simple-examples-d301dbef2c37

⚫ Node.JS was created by Ryan Dahl and other
developers working at Joyent in 2009

⚫ Combination of Google's V8 JavaScript engine, an
event loop, and a low-level I/O API

⚫ npm, the node package manager, in 2011

⚫ Versions: 0.10, 0.12, 4.0 … 12.0!

Node.JS

Advantages of Node.JS

https://www.quora.com/What-are-the-advantages-of-node-js-1

• Easy to Learn. If you know JavaScript...otherwise easy to get started,
but careful of pitfalls!

• Full Stack JS. Single programming language for client side (e.g., browser) and backend (i.e.,
server)

• Freedom to Develop Apps. Web apps and mobile apps, browser extensions, games, decentralized
apps…

• Higher performance. Process several request simultaneously thanks to the asynchronous non-
blocking paradigm; highly scalable horizontally and vertically

• Many Frameworks and Testing tools. Bootstrap, jQuery, React, Mocha, Ganache, nodeGame…

• Huge and Active Community.

https://www.quora.com/What-are-the-advantages-of-node-js-1

JavaScript is #1 Language on Github

https://octoverse.github.com/

https://octoverse.github.com/

GitHub.com

https://octoverse.github.com/

https://octoverse.github.com/

First Exercise!

Hands On

Open the JavaScript console of your browser:

(ctrl+shift+I or Right Click/Inspect Element)

First Exercise!

Hands On

The Inspector is where you can visualize the live DOM (Document Object
Model) and make changes, including CSS (Cascading Style Sheets) changes.

The actual names might be slightly different depending on
the browser version and language. For instance, "Inspector"
is sometimes called "Elements."

First Exercise!

Hands On

The Inspector is where you can visualize the live DOM (Document Object
Model) and make changes, including CSS (Cascading Style Sheets) changes.

First Exercise!

Hands On

Try to open different web sites, how does the content of
the console changes?

Clear any pre-existing output: click on button or type
clear()

First Exercise!

Hands On

bahn.de: lots of messy output, including your first and last name

First Exercise!

Hands On

facebook.com: a warning to not fall victim of social engineering phishing attacks

First Exercise!

Hands On

nytimes.com: a job offer!

First Exercise!

Hands On

Try to open different web sites, how does the content of
the console changes?

Clear any pre-existing output: click on button or type
clear()

First Exercise!

Hands On

Type something in the console using the command:

console.log('This is my very own text');

First Exercise!

Hands On

Now do it… feel the power of the alert!

alert('This is my revenge!');

alert('again and again...');

Variable Declaration in JS

⚫ An account on GitHub: https://github.com/

⚫ The text editor Atom https://atom.io/

⚫ The environment Node.JS https://nodejs.org/en/

⚫ The version control system Git https://git-scm.com/

Preparation: Have You Got?

https://github.com/
https://atom.io/
https://nodejs.org/en/
https://git-scm.com/

Variable Declaration in JS

Are Git and Node.JS Installed Properly?

Can you reproduce the following
or a similar output?

Open Git Bash (Win) or
a Terminal (OSX/Linux)

Git installed

Node.JS installed

Variable Declaration in JS

Seminar Structure

Theory with examples
Do-it yourself exercises

Variable Declaration in JS

Seminar Structure

Theory with examples
Do-it yourself exercises

Exercises extend what is covered in the slides. Some of you will find some exercises
easy and others more difficult. Don't worry if you don't finish them all:
Do them at your own pace!

Variable Declaration in JS

Exercise 0: Download the exercises

Or better said:
clone the GitHub repository of the
exercises

Variable Declaration in JS

Exercise 0: Download the exercises

Variable Declaration in JS

Exercise 0B: Configure Atom

Let's open the slide deck "Configure Atom"

First Exercise!

How I Learnt JavaScript

Great tutorial from novice to JavaScript Ninja:
http://javascript.info/

10+years ago…

http://javascript.info/

Variable Declaration in JS

Part 1: Basics

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Keyword announcing that what follows is the name of a new variable

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

The name of the variable. It is case sensitive.
It references the value throughout the rest of the code.
Depending on the type of its value, it might expose other methods/properties.

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Keyword that assigns what is to its right to the variable to the left.
Other programming language use <- to indicate the directionality.

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

The value of assignment: a string wrapped in quotes

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

The semicolon signals that the command is finished.

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message =

'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Is this valid?

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message =

'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Is this valid? YES.
Commands can span over multiple lines, therefore it is
important to use the semicolon to specify where they end.

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message;

message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Is this valid?

http://javascript.info/

Variable Declaration in JS

⚫Methods (or Functions)
⚫ Objects
⚫ Arrays

Variables

Variables

let message;

message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Is this valid? YES.
When do you want to separate creation and assignment?

http://javascript.info/

Variable Declaration in JS

Variables

Variables

let message;

... THINGS HAPPENS ...

message = 'Hello!';

http://javascript.info/

Assignment

Creation

Value to assign not available immediately
Uncertainty about which code block will assign it
Need to be available across different code blocks
(more on variable scoping later)

http://javascript.info/

Variable Declaration in JS

Variables

Variables

let message;

... THINGS HAPPENS ...

message = 'Hello!';

http://javascript.info/

Assignment

Creation

Value to assign not available immediately
Uncertainty about which code block will assign it
Need to be available across different code blocks
(more on variable scoping later)

Notice we don't use let again, otherwise it will throw an error.

http://javascript.info/

Variable Declaration in JS

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Strings must be wrapped in quotes: ' or " are equivalent.

http://javascript.info/

Variable Declaration in JS

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Text following // is a comment and it is not read by JavaScript

Strings must be wrapped in quotes: ' or " are equivalent.

http://javascript.info/

Variable Declaration in JS

Variables

Variables

let message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

http://javascript.info/

Opens a popup in the Browser

Text following // is a comment and it is not read by JavaScript

Strings must be wrapped in quotes: ' or " are equivalent.

http://javascript.info/

Variable Declaration in JS

let a = 1; // number

let b = 'Hello world!'; // string

let c = false; // boolean

let d = function(p) { return p+1; }; // function

let e = { key: 'value' }; // object

let f = ["value1", 3, c]; // array (type is object)

Main Variable Types in JS

These are primitive types

Variable Declaration in JS

let a = 1; // number

let b = 'Hello world!'; // string

let c = false; // boolean

let d = function(p) { return p+1; }; // function

let e = { key: 'value' }; // object

let f = ["value1", 3, c]; // array (type is object)

Main Variable Types in JS

These are composite types

Variable Declaration in JS

let a = 1; // number

let b = 'Hello world!'; // string

let c = false; // boolean

let d = function(p) { return p+1; }; // function

let e = { key: 'value' }; // object

let f = ["value1", 3, c]; // array (type is object)

⚫ Variables are loosely (or "dynamically") typed
⚫ Variables are scoped within the block in which they are declared

Main Variable Types in JS

TWO IMPORTANT CONCEPTS:

Variable Declaration in JS

Variables Are Dynamically Typed

var message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

// type of value changed to number

message = 2019;

// string concatenation (works also with numbers).

alert('This is year ' + message);

Variable Declaration in JS

Variables Are Dynamically Typed

var message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

// type of value changed to number

message = 2019;

// string concatenation (works also with numbers).

alert('This is year ' + message);

Variable are "loosely typed," that is their
type (string, number, etc.) can be changed
after assignment

Variable Declaration in JS

Variables Are Dynamically Typed

var message = 'Hello!';

// value changed.

message = 'World!';

alert(message);

// type of value changed to number

message = 2019;

// string concatenation (works also with numbers).

alert('This is year ' + message);

Plus is used to concatenate strings.
Variable are converted on-the-fly when
they are manipulated together with others
of a different type. Need to be careful
because it can create unexpected behavior.

Variable Declaration in JS

Type conversions

"7" + 3; "73"; // Converted to String

"7" – 3; 4; // Converted to Number

Variable Declaration in JS

Type conversions

"7" + 3; "73"; // Converted to String

"7" – 3; 4; // Converted to Number

Variable Declaration in JS

Type conversions

Why is that?

"7" + 3; "73"; // Converted to String

"7" – 3; 4; // Converted to Number

Variable Declaration in JS

Type conversions

Why is that?
JavaScript made its best guess. Plus is the operator for string
concatenation, hence everything became a string. Minus can only
be for arithmetic operations, hence the conversion to number.

"7" + 3; "73"; // Converted to String

"7" – 3; 4; // Converted to Number

Variable Declaration in JS

Do the Math

Operator Operation Example

+ Addition 1+1; // 2

- Subtraction 1-1; // 0

/ Division 1/10; // 0.1

* Multiplication 2*2; // 4

% Remainder 7%4; // 1

Variable Declaration in JS

Do the Math

Operator Operation Example

+ Addition 1+1; // 2

- Subtraction 1-1; // 0

/ Division 1/10; // 0.1

* Multiplication 2*2; // 4

% Remainder 7%4; // 1

++ Add 1 to the current value (also --) let a = 1; a++; // 2

+= Add something to current value (also *=, -=, /=) let a = 1; a+=2; // 3

Variable Declaration in JS

Do the Math

Operator Operation Example

+ Addition 1+1; // 2

- Subtraction 1-1; // 0

/ Division 1/10; // 0.1

* Multiplication 2*2; // 4

% Remainder 7%4; // 1

++ Add 1 to the current value (also --) let a = 1; a++; // 2

+= Add something to current value (also *=, -=, /=) let a = 1; a+=2; // 3

** Exponentiation 3**2; // 9

Math The Math object offers several operations Math.random(); // 0.1231

Math.floor(3.451); // 3

Variable Declaration in JS

Do the Math

Operator Operation Example

+ Addition 1+1; // 2

- Subtraction 1-1; // 0

/ Division 1/10; // 0.1

* Multiplication 2*2; // 4

% Remainder 7%4; // 1

++ Add 1 to the current value (also --) let a = 1; a++; // 2

+= Add something to current value (also *=, -=, /=) let a = 1; a+=2; // 3

** Exponentiation 3**2; // 9

Math The Math object offers several operations Math.random(); // 0.1231

Math.floor(3.451); // 3

The round parentheses signal a method invocation, what is inside the
parentheses is an input parameter. More on this later…

Variable Declaration in JS

Conditional Operators: If/Else Statements

if (CONDITION) {

// Execute if condition is TRUE

}

else {

// Execute if condition is FALSE

}

You say that if/else statements are "branching off"
your code, because only one of the two branches will
be executed at run-time.

Variable Declaration in JS

Conditional Operators: If/Else Statements

if (CONDITION) {

// Execute if condition is TRUE

}

else {

// Execute if condition is FALSE

}

If/Else can be chained and the order matters.

Variable Declaration in JS

Conditional Operators: If/Else Statements

if (CONDITION1) {

// Execute if condition is TRUE

}

else if (CONDITION2){

// Execute if condition1 is FALSE and

// condition2 is TRUE.

}

Will one of the two branches always be executed?

Variable Declaration in JS

Conditional Operators: If/Else Statements

if (CONDITION1) {

// Execute if condition is TRUE

}

else if (CONDITION2){

// Execute if condition1 is FALSE and

// condition2 is TRUE.

}

Will one of the two branches always be executed?
Not if both conditions are false.

Variable Declaration in JS

Conditional Operators: If/Else Statements

if (CONDITION1) {

// Execute if condition is TRUE

}

else if (CONDITION2){

// Execute if condition1 is FALSE and

// condition2 is TRUE.

}

else {

// If both conditions above are FALSE,

// I will be executed.

}

Variable Declaration in JS

Logical Operators

if (CONDITION1 && CONDITION2) {

// Executed only if both conditions are TRUE

}

&& (AND)

|| (OR)

if (CONDITION1 || CONDITION2) {

// Executed if either condition is TRUE

}

if (!CONDITION) {

// Executed only if condition is FALSE

}

! (NOT)

Variable Declaration in JS

Logical Operators

if (CONDITION1 && CONDITION2) {

// Executed only if both conditions are TRUE

}

&& (AND)

|| (OR)

if (CONDITION1 || CONDITION2) {

// Executed if either condition is TRUE

}

if (!CONDITION) {

// Executed only if condition is FALSE

}

! (NOT)

"Short-circuit"
operators. The second
condition is evaluated
only if needed.

Variable Declaration in JS

Comparisons

Operator Operation Example

> Greater than 2>1; // true

>= Greater or equal than 1>=1; // true

< Less than 10<1; // false

<= Less or equal than 3<=3; // true

== Equals to 2==2; // true

=== Strictly equals to 2===2; // true

Like assignments, comparisons have an operator which separates
a left-hand side term and right-hand side term, e.g., 3 > 1, and
they return a Boolean value (true or false).

Variable Declaration in JS

Comparisons

Operator Operation Example

> Greater than 2>1; // true

>= Greater or equal than 1>=1; // true

< Less than 10<1; // false

<= Less or equal than 3<=3; // true

== Equals to 2==2; // true

=== Strictly equals to 2===2; // true

Like assignments, comparisons have an operator which separates
a left-hand side term and right-hand side term, e.g., 3 > 1, and
they return a Boolean value (true or false).

Why do we need two types of equals?

Variable Declaration in JS

Comparisons

Operator Operation Example

> Greater than 2>1; // true

>= Greater or equal than 1>=1; // true

< Less than 10<1; // false

<= Less or equal than 3<=3; // true

== Equals to 2==2; // true

=== Strictly equals to 2===2; // true

Like assignments, comparisons have an operator which separates
a left-hand side term and right-hand side term, e.g., 3 > 1, and
they return a Boolean value (true or false).

Why do we need two types of equals? Because of type conversions

== vs === https://dorey.github.io/JavaScript-Equality-Table/

Variable Comparison: === vs ==

if (true === true) // true

if (false === false) // true

...

• If the cell is filled, it means the result of
a comparison is true, otherwise false

• The table on the diagonal reads:

===

== vs ===
Variable Comparison: === vs ==

https://dorey.github.io/JavaScript-Equality-Table/

=== ==

== vs ===
Variable Comparison: === vs ==

https://dorey.github.io/JavaScript-Equality-Table/

// Using double equal.

if (1 == true) {

console.log('This can't be true!');

}

=== ==

== vs ===
Variable Comparison: === vs ==

https://dorey.github.io/JavaScript-Equality-Table/

// Using double equal.

if (1 == true) {

console.log("This can't be true!");

}

// will print "This can't be true!"

=== ==

== vs ===
Variable Comparison: === vs ==

https://dorey.github.io/JavaScript-Equality-Table/

=== ==

// Using triple equal.

if (1 === true) {

console.log("This can't be true!");

}

== vs ===
Variable Comparison: === vs ==

https://dorey.github.io/JavaScript-Equality-Table/

=== ==

// Using triple equal.

if (1 === true) {

console.log("This can't be true!");

}

// will print nothing

== vs ===
Variable Comparison: === vs ==

https://dorey.github.io/JavaScript-Equality-Table/

Use always ===

(unless you have a good reason)

==

Variable Declaration in JS

Block Scope

let favoriteFood = 'lasagne';

if (favoriteFood === 'lasagne') {

console.log('Well Done!');

favoriteFood += ' with a lot of cheese';

let secondFavorite = 'pizza';

}

console.log(favoriteFood);

console.log(secondFavorite);

What will it print?

Variable Declaration in JS

Block Scope

let favoriteFood = 'lasagne';

if (favoriteFood === 'lasagne') {

console.log('Well Done!');

favoriteFood += ' with a lot of cheese';

let secondFavorite = 'pizza';

}

console.log(favoriteFood); // 'lasagne with a lot of cheese';

console.log(secondFavorite); // undefined (error is thrown)

What will it print?

Variable Declaration in JS

Block Scope

let favoriteFood = 'lasagne';

if (favoriteFood === 'lasagne') {

console.log('Well Done!');

favoriteFood += ' with a lot of cheese';

let secondFavorite = 'pizza';

}

console.log(favoriteFood); // 'lasagne with a lot of cheese';

console.log(secondFavorite); // undefined (error is thrown)

secondFavorite lives only within the block in which it is
defined. Blocks are delimited by curly brackets.

Variable Declaration in JS

String Methods

favoriteFood // 'lasagne with a lot of cheese';

let length = favoriteFood.length; // 28

let index = favoriteFood.indexOf('with a lot of cheese');

if (index !== -1) {

console.log('Uhm...are you American?');

favoriteFood = favoriteFood.substring(0, index).trim();

}

Variable Declaration in JS

String Methods

favoriteFood // 'lasagne with a lot of cheese';

let length = favoriteFood.length; // 28

let index = favoriteFood.indexOf('with a lot of cheese');

if (index !== -1) {

console.log('Uhm...are you American?');

favoriteFood = favoriteFood.substring(0, index).trim();

}

The dot operator grants access to the property of objects.
Wait wasn't favoriteFood a string? Yes, but it exposes
methods and properties like an object.

Variable Declaration in JS

String Methods

favoriteFood // 'lasagne with a lot of cheese';

let length = favoriteFood.length; // 28

let index = favoriteFood.indexOf('with a lot of cheese');

if (index !== -1) {

console.log('Uhm...are you American?');

favoriteFood = favoriteFood.substring(0, index).trim();

}

The dot operator grants access to the property of objects.
Wait wasn't favoriteFood a string? Yes, but it exposes
methods and properties like an object.

Here we learn that there are 28 characters in the string. That
is a bit long for a single favorite food. Let's investigate

Variable Declaration in JS

String Methods

favoriteFood // 'lasagne with a lot of cheese';

let length = favoriteFood.length; // 28

let index = favoriteFood.indexOf('with a lot of cheese');

if (index !== -1) {

console.log('Uhm...are you American?');

favoriteFood = favoriteFood.substring(0, index).trim();

}

The method indexOf returns the index of the first occurrence of the string
passed as input parameter, or -1 if not found.

Variable Declaration in JS

String Methods

favoriteFood // 'lasagne with a lot of cheese';

let length = favoriteFood.length; // 28

let index = favoriteFood.indexOf('with a lot of cheese');

if (index !== -1) {

console.log('Uhm...are you American?');

favoriteFood = favoriteFood.substring(0, index).trim();

}

substring returns a portion of the original string as specified by its input parameters.

Variable Declaration in JS

String Methods

favoriteFood // 'lasagne with a lot of cheese';

let length = favoriteFood.length; // 28

let index = favoriteFood.indexOf('with a lot of cheese');

if (index !== -1) {

console.log('Uhm...are you American?');

favoriteFood = favoriteFood.substring(0, index).trim();

}

Trim removes white beginning and trailing white spaces. We chained it to the results
of the previous method.

Variable Declaration in JS

Other Ways to Declare Variables

var message = 'I am an old-timer!';

const MESSAGE = 'I am immutable';

Variable Declaration in JS

Other Ways to Declare Variables

var message = 'I am an old-timer!';

const MESSAGE = 'I am immutable';

Var variables are prior to ES6, still valid, but its usage
is not recommended any more.

Variable Declaration in JS

Other Ways to Declare Variables

var message = 'I am an old-timer!';

const MESSAGE = 'I am immutable';

Var variables are prior to ES6, still valid, but its usage
is not recommended any more.

Constants are variables that will throw an error if you
attempt to re-assign them. But not if you change them!

https://levelup.gitconnected.com/stop-using-var-to-declare-variables-in-javascript-6c0caec16f43More on vars

https://levelup.gitconnected.com/stop-using-var-to-declare-variables-in-javascript-6c0caec16f43

Variable Declaration in JS

Exercises

Part_1_Basics/1_primitive_types.js

Variable Declaration in JS

Objects

Variable Declaration in JS

Objects

• Objects are containers for variables indexed by a key (in other
programming languages they may be called maps or dictionaries)

• They can contain variables of any type inside

Variable Declaration in JS

Objects

var user = {

name: "John", // by key "name" store value "John"

age: 30 // by key "age" store value 30

};

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

Objects

// We now add a new property

// Note! JavaScript is case sensitive

user.isAdmin = true;

// Delete an existing one.

delete user.age;

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

Objects

// We now add a new property

// Note! JavaScript is case sensitive

user.isAdmin = true;

// Delete an existing one.

delete user.age;

http://javascript.info/

The dot operator accesses the value of a given
property inside the object.

http://javascript.info/

Variable Declaration in JS

Objects

// We now add a new property

// Note! JavaScript is case sensitive

user.isAdmin = true;

// Delete an existing one.

delete user.age;

http://javascript.info/

The dot operator accesses the value of a given
property inside the object.
If the property was not previously defined (as
in this case), it will be simply created.

http://javascript.info/

for (let property in user) {

if (user.hasOwnProperty(property)) {

console.log(property + ': ' + user[property]);

}

}

// Output.

// name: John

// isAdmin: true

Prototype vs Property

Looping in Objects (For In)

for (let property in user) {

if (user.hasOwnProperty(property)) {

console.log(property + ': ' + user[property]);

}

}

// Output.

// name: John

// isAdmin: true

Prototype vs Property

Looping in Objects (For In)

- hasOwnProperty is necessary to
avoid contamination of other
properties belonging to the object
and not added by the user

- MUST USE ALWAYS.

for (let property in user) {

if (user.hasOwnProperty(property)) {

console.log(property + ': ' + user[property]);

}

}

// Output.

// name: John

// isAdmin: true

Prototype vs Property

Looping in Objects (For In)

- The square parentheses allows one to access
the value of the property of an object, when
the property name is contained in a variable.

- The following notations are equivalent:
user.name; // John

user['name']; // John;

var property = "name";

user[property]; // John

Prototype vs Property

Looping in Objects (For In)

- The + sign is used to concatenate strings

for (let property in user) {

if (user.hasOwnProperty(property)) {

console.log(property + ': ' + user[property]);

}

}

// Output.

// name: John

// isAdmin: true

Variable Declaration in JS

Arrays

• Arrays are containers for variables indexed by a number
• They are faster to iterate through than objects
• Like objects, they can contain variables of any type

Variable Declaration in JS

Arrays

var fruits = [

"Apple",

"Orange",

"Pear",

"Lemon"

];

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

Arrays

var fruits = [

"Apple",

"Orange",

"Pear",

"Lemon"

];

http://javascript.info/

Arrays are collections of items indexed by a number.
The first item has index 0, the second item has index 1, and so on…
Arrays can contain items of any type (string, number, etc.) and also mix them.

http://javascript.info/

Variable Declaration in JS

Arrays

var fruits = [

"Apple",

"Orange",

"Pear",

"Lemon"

];

fruits.length; // 4

fruits[2]; // "Pear"

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

Arrays

var fruits = [

"Apple",

"Orange",

"Pear",

"Lemon"

];

fruits.length; // 4

fruits[2]; // "Pear"

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

Arrays

var fruits = [

"Apple",

"Orange",

"Pear",

"Lemon"

];

fruits.length; // 4

fruits[2]; // "Pear"

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

Arrays

var fruits = [

"Apple",

"Orange",

"Pear",

"Lemon"

];

fruits.length; // 4

fruits[2]; // "Pear"

http://javascript.info/

http://javascript.info/

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

// Code to be added here.

}

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

// Code to be added here.

}
A for loop repeats the code inside the parenthesis as long as a condition is true
(we will add the code later).

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

}
It is divided in 3 parts, separated by ; (semicolon).

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

}
It is divided in 3 parts, separated by ; (semicolon).
Initialization

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

}
It is divided in 3 parts, separated by ; (semicolon).
Initialization ; Condition

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

}
It is divided in 3 parts, separated by ; (semicolon).
Initialization ; Condition ; Increment (i++ means i = i + 1)

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += fruits[i] + ',';

}

alert(message);

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += fruits[i] + ',';

}

alert(message);The first iteration i = 0, the second iteration i = 1, the third iteration i = 2, and
the fourth and last iteration i = 3. In this way, we can access all the items in the
array and create a text with all the fruits we like.

Variable Declaration in JS

Arrays and For Loops

var fruits = ["Apple", "Orange",

"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += fruits[i] + ',';

}

alert(message);However, there is a grammatical problem! The text will end with
a comma, instead that with a dot. Do you know how to fix it?

Variable Declaration in JS

Exercises

Part_1_Basics/2_objects_and_loops.js

Variable Declaration in JS

Functions

• Functions are reusable blocks of codes

• They may take input parameters and may return an output value

• Functions abstract the complexity of code operations inside their body

FunctionInputs Output

Variable Declaration in JS

Functions

// Standard function.

// Functions are reusable blocks of codes.

function showPerson(person) {

let message = 'Hello, ';

message = message + 'person.name';

alert(message);

}

Variable Declaration in JS

Functions

// Standard function.

// Functions are reusable blocks of codes.

function showPerson(person) {

let message = 'Hello, ';

message = message + 'person.name';

alert(message);

}

Note! Functions are also called "methods" or
"callbacks." The definition is always the same.

Variable Declaration in JS

Functions

// Standard function.

// Functions are reusable blocks of codes.

function showPerson(person) {

let message = 'Hello, ';

message = message + 'person.name';

alert(message);

}

This line is the function declaration.
It specifies the name of the function
as well as input parameters

Variable Declaration in JS

Functions

// Standard function.

// Functions are reusable blocks of codes.

function showPerson(person) {

let message = 'Hello, ';

message = message + 'person.name';

alert(message);

}

This line is the function declaration.
It specifies the name of the function
as well as input parameters

person is the input parameter

Variable Declaration in JS

Functions

// Standard function.

// Functions are reusable blocks of codes.

function showPerson(person) {

let message = 'Hello, ';

message = message + 'person.name';

alert(message);

}

Variable Declaration in JS

Functions

// Standard function.

// Functions are reusable blocks of codes.

function showPerson(person) {

let message = 'Hello, ';

message = message + 'person.name';

alert(message);

}

The part wrapped in curly brackets is called the
"body" of the function, it specifies what the it
actually does internally

Variable Declaration in JS

Functions

// Execute the function.

// Remember! We have already defined

// the variable user before.

showPerson(user);

Variable Declaration in JS

Function Invocation

// Execute the function.

// Remember! We have already defined

// the variable user before.

showPerson(user);

Note! Functions are "invoked" or "executed" or "called."
The terms are synonymous.

Variable Declaration in JS

Function Invocation

// Standard function.

function showPerson2(person) {

let message = 'Hello, ';

message = message + 'person.name';

if (person.isAdmin === true) {

message += 'I notice that you are an admin';

}

alert(message);

}

Variable Declaration in JS

Functions

// Standard function.

function showPerson2(person) {

let message = 'Hello, ';

message = message + 'person.name';

if (person.isAdmin === true) {

message += 'I notice that you are an admin';

}

alert(message);

}

This is an "if statement." If the condition
is true, it will execute the text inside the
parentheses

Variable Declaration in JS

Functions

// Standard function.

function showPerson2(person) {

let message = 'Hello, ';

message = message + 'person.name';

if (person.isAdmin === true) {

message += 'I notice that you are an admin';

}

alert(message);

}

The number of equals matters
- 1 equal for assignment to variables
- 2 equals for comparison
- 3 equals for strict comparison

JS Functions

Input Parameters

// Internally modifies input.

function doSomething(obj, num, str) {

obj.a = 10;

num = 1;

str = 'a';

}

var obj = {}, num = 0, str = '';

doSomething(obj, num, str);

console.log(obj);

console.log(num);

console.log(str);

What will the final values of the object,
the string, and the number be, after they have
been modified by the function?

JS Functions

Input Parameters

// Internally modifies input.

function doSomething(obj, num, str) {

obj.a = 10;

num = 1;

str = 'a';

}

var obj = {}, num = 0, str = '';

doSomething(obj, num, str);

console.log(obj); // { a: 10 }

console.log(num); // 0

console.log(str); // ''

Objects are passed as a
reference (to an address in
memory), while numbers and
strings are copies (primitive
types cannot be referenced).

Modifying a copy does not
affect the value outside the
function, modifying the
reference does.

Variable Declaration in JS

Our Previous Example: Arrays and For Loops

var message = 'I like ';

// This is a "for loop".

for (var i = 0 ; i < fruits.length ; i++) {

message += fruits[i];

if (i < (fruits.length – 1)) {

message += ', ';

}

else {

message += '.';

}

}

alert(message);

Variable Declaration in JS

Our Previous Example: Arrays and For Loops

var message = 'I like ';

// This is a "for loop".

for (var i = 0 ; i < fruits.length ; i++) {

message += fruits[i];

if (i < (fruits.length – 1)) {

message += ', ';

}

else {

message += '.';

}

}

alert(message);

That's a lot of code inside
the for-loop. How to make it
more compact and more
general with a function?

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

We create a function for joining words

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

This last value is optional, because the
function defines a default parameter.

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (let i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

If-else branches can be written without parentheses, and
they apply to the next line, as delimited by semicolon (;).

Variable Declaration in JS

Functions with Returns

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

var message = 'I like ';

// This is a "for loop".

for (var i = 0 ; i < fruits.length ; i++) {

message += join(fruits[i], i, fruits.length, "!");

}

The return keyword makes available
outside of the function the modified
variable word.

Variable Declaration in JS

Ternary Operator

function join(word, index, arraySize, endSign = '.') {

if (index === arraySize -1) word += ',';

else word += endSign;

return word;

}

function join2(word, index, arraySize, endSign = '.') {

word += index === arraySize -1 ? ',' : endSign;

return word;

}

We can make a new function join2 even more compact. The ternary operator ? merges
together an if/else statement in one line, separating the two branches with :

Variable Declaration in JS

Ternary Operator

function join2(word, index, arraySize, endSign = '.') {

word += index === arraySize -1 ? ',' : endSign;

return word;

}

function join3(word, index, arraySize, endSign = '.') {

return word += (index === arraySize -1 ? ',' : endSign);

}

We can make a new function join3 even more compact by merging the ternary
operator and the return statement in one line.

Is join3 better than join2?

Variable Declaration in JS

Ternary Operator

function join2(word, index, arraySize, endSign = '.') {

word += index === arraySize -1 ? ',' : endSign;

return word;

}

function join3(word, index, arraySize, endSign = '.') {

return word += (index === arraySize -1 ? ',' : endSign);

}

We can make a new function join3 even more compact by merging the ternary
operator and the return statement in one line.

Is join3 better than join2? NO. join3 is much less readable
and in the long-term it will increase the maintenance costs.

Variable Declaration in JS

• Variables declared inside a function are expected to stay private,
that is not accessible outside of the function.

Private Variables

Variable Declaration in JS

• Variables declared inside a function are expected to stay private,
that is not accessible outside of the function.

Private Variables

function foo(bar) {

let a = bar;

}

foo(10);

console.log(a); // undefined

Private Variables

function foo() {

let a = 1;

}

foo();

console.log(a); // undefined

What happens is we do
not use the let keyword?

Private Variables

function foo() {

let a = 1;

}

foo();

console.log(a); // undefined

JS will try to access the global variable a

What happens is we do
not use the let keyword?

Private Variables

function foo() {

let a = 1;

}

foo();

console.log(a); // undefined

JS will try to access the global variable a
What if there is no global variable a?

What happens is we do
not use the let keyword?

Private Variables

function foo() {

let a = 1;

}

foo();

console.log(a); // undefined 1

What happens is we do
not use the let keyword?

JS will try to access the global variable a
What if there is no global variable a?

Variable leaking into the global scope

Variable Declaration in JS

Exercises

Part_1_Basics/3_functions.js

Catching Errors

• When your code runs you do not generally have full controls on the value of
all the variables

• For instance, a user may input a text instead of a number in a form, and this
may cause errors

Catching Errors

• When your code runs you do not generally have full controls on the value of
all the variables

• For instance, a user may input a text instead of a number in a form, and this
may cause errors

• They look ugly:

Catching Errors

• Try and Catch Statements prevent the errors to "bubble up" and let your system
fail gracefully.

• Simply wrap the code that may raise an error in a try and catch clause

try {

let a = null;

a.length;

// Throws an error and may cause your app to stop.

}

catch(error) {

a = 'was supposed to be a string.';

console.log('sorry my bad. Carry on.');

}

Variable Declaration in JS

Main JS Operators Cheatsheet

Quotation mark, they enclose strings
and they are mostly the same in JS

English Name Usage Example

' Single quote Wraps strings 'hello'

" Double quote Wraps strings "hello again"

/ Slash Comments (two in a row) // comment

; Semicolon Ends a line (not mandatory, but recommended) 'hello';

: Colon Separates a key and a value in an object { key : 1 }

. Dot Access an object property (or creates it if not found) object.key // 1

, Comma Separate properties in objects { key1 : 1 , key2 : 2 }

() Parentheses or Brackets Invoke a function, wrap condition statements alert('hello');
If (counter > 10) …

[] Square Parentheses (or
Brackets)

Define an array, access elements of the array [1, 2, 3];
array[0]; // 1

{} Curly Parentheses (or
Brackets)

Define objects, function bodies, blocks of code { key : 1 }
function() { … }
for (…) { … }

Variable Declaration in JS

Exercises

Part_1_Basics/4_try_catch.js
Part_1_Basics/5_final_exercise.js

Variable Declaration in JS

If You Finish Everything (or if you need a break)

https://lab.reaal.me/jsrobot/

https://lab.reaal.me/jsrobot/

Variable Declaration in JS

Part 2: Object Oriented Programming (OOP)

Prototype vs Property

Object Oriented Programming (OOP)

• JavaScript is multi-paradigm, it has features of the OOP paradigm
and of the procedural programming (PP) paradigm

• OOP and PP are two conceptually opposite coding philosophy
• PP revolves stateless procedures (functions)
• OOP revolves around stateful objects and classes, and on precise

relationships between them.

Prototype vs Property

Objects and Classes Diagram

h
tt

p
s:

//
w

w
w

.u
m

l-
d

ia
gr

am
s.

o
rg

/c
la

ss
-d

ia
gr

am
s-

o
ve

rv
ie

w
.h

tm
l

https://www.uml-diagrams.org/class-diagrams-overview.html

Prototype vs Property

Objects and Classes Diagram

https://www.coderglass.com/java/java-object-and-class.phpImage source:

https://www.coderglass.com/java/java-object-and-class.php

Prototype vs Property

Objects and Classes Diagram

https://www.coderglass.com/java/java-object-and-class.phpImage source:

Classes are blueprints for objects

https://www.coderglass.com/java/java-object-and-class.php

Prototype vs Property

Objects and Classes Diagram

https://www.coderglass.com/java/java-object-and-class.phpImage source:

Classes are blueprints for objects

https://en.wikipedia.org/wiki/Blueprint

https://www.coderglass.com/java/java-object-and-class.php
https://en.wikipedia.org/wiki/Blueprint

Prototype vs Property

Objects and Classes Diagram

https://www.coderglass.com/java/java-object-and-class.phpImage source:

Classes are blueprints for objects

https://en.wikipedia.org/wiki/Blueprint

Classes
define
properties

and
methods

Objects
instantiate
classes by
adding a live
state to its
properties

https://www.coderglass.com/java/java-object-and-class.php
https://en.wikipedia.org/wiki/Blueprint

Prototype vs Property

JavaScript Classes

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

Prototype vs Property

JavaScript Classes

Notice! This is the news ES6 definition of a class.
It is much easier than using ES5 prototypical definition, even if
behind the scenes it is exactly the same. Exercise available!

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

Prototype vs Property

JavaScript Classes

// Create an object using the new operator

let stefano = new Person();

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

Prototype vs Property

JavaScript Classes

// Create an object using the new operator

let stefano = new Person();

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

The new operator invokes the constructor method
of the class. The constructor is a special method
which is executed only once, upon creation.

Prototype vs Property

JavaScript Classes

// Create an object using the new operator

let stefano = new Person();

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

The new operator invokes the constructor method
of the class. The constructor is a special method
which is executed only once, upon creation.

In this case, it is adding the property 'name' with
the value 'Stefano Balietti'.

Prototype vs Property

The Constructor

The constructor is a compact way of creating new objects. What it does is the
following:

constructor() {

this.name = 'Stefano Balietti';

}

Prototype vs Property

The Constructor

constructor() {

let person = {};

person.name = 'Stefano Balietti';

return person;

}

The constructor is a compact way of creating new objects. What it does is the
following:

constructor() {

this.name = 'Stefano Balietti';

}

Prototype vs Property

The Constructor

constructor() {

let this = {};

this.name = 'Stefano Balietti';

return this;

}

The constructor is a compact way of creating new objects. What it does is the
following:

constructor() {

this.name = 'Stefano Balietti';

}

Prototype vs Property

The Instantiated Object

// Create an object using the new operator

let stefano = new Person();

console.log(stefano)

{

name: 'Stefano Balietti

}

In the technical language the
variable stefano is the live
"instance" of the class Person.

Couldn't we directly create the object? What is the advantage of using a
constructor function?

Prototype vs Property

The Instantiated Object

// Create an object using the new operator

let stefano = new Person();

console.log(stefano)

{

name: 'Stefano Balietti

}

In the technical language the
variable stefano is the live
"instance" of the class Person.

Couldn't we directly create the object? What is the advantage of using a
constructor function?

1. For complex object is faster because the blueprint is already loaded in memory
2. It allows for complex objects!

Prototype vs Property

The Instantiated Object

// Create an object using the new operator

let stefano = new Person();

console.log(stefano)

{

name: 'Stefano Balietti

}

In the technical language the
variable stefano is the live
"instance" of the class Person.

Couldn't we directly create the object? What is the advantage of using a
constructor function?

1. For complex object is faster because the blueprint is already loaded in memory
2. It allows for complex objects! stefano.sayHi();//I am Stefano Balietti

Variable Declaration in JS

A More Complex Person

class Person {

constructor(name, year) {

this.name = name;

this.year = year;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + this.year;

}

}

Here the constructor is accepting input
parameters to customize the instance.

Variable Declaration in JS

A More Complex Person

class Person {

constructor(name, year) {

this.name = name;

this.year = year;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + this.year;

}

}

let brendan = new Person('Brendan', 1961);

brendan.sayHi('Stefano');

// 'Hello Stefano. I am Brendan and I was born in 1961'

Here the constructor is accepting input
parameters to customize the instance.

Variable Declaration in JS

Exercises

Part_2_OOP/classes.js

Prototype vs Property

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Prototype vs Property

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Variable Declaration in JS

Encapsulation

• Encapsulation means that you can hide some of the methods and properties of a
class declaring them as private, so they are not accessible outside of the class

• This prevents erroneous or malicious manipulation of the object by other entities
• It also reduces the complexity of the API for other external developers

Variable Declaration in JS

Encapsulation

• Encapsulation means that you can hide some of the methods and properties of a
class declaring them as private, so they are not accessible outside of the class.

• This prevents erroneous or malicious manipulation of the object by other entities
• It also reduces the complexity of the API for other external developers

• JavaScript does not natively support encapsulation
• You can do it with closures, but it is complex topic, so we don't apply it here

• Here some references for the curious ones:
• https://medium.com/@luke_smaki/javascript-es6-classes-8a34b0a6720a
• https://www.intertech.com/Blog/encapsulation-in-javascript/

https://medium.com/@luke_smaki/javascript-es6-classes-8a34b0a6720a
https://www.intertech.com/Blog/encapsulation-in-javascript/

Prototype vs Property

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Variable Declaration in JS

Inheritance

• Inheritance means that classes can share portion of codes with each other, by
defining directional relationships of dependence, such as Parent/Child

• JavaScript has native support for this feature

Variable Declaration in JS

OOP Pillar 1: Inheritance

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I am class ' + (this.year + 15);

}

}

// We are going to add code here.

Variable Declaration in JS

OOP Pillar 1: Inheritance

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I am class ' + (this.year + 15);

}

}

Here we extend the previously defined
Person class.

It means that the Liar class will have all
the methods (including the constructor)
and properties of the parent class.// We are going to add code here.

Prototype vs Property

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Variable Declaration in JS

Polymorphism

• Inheritance means that classes can share portion of codes with each other, by
defining directional relationships of dependence, such as Parent/Child

• JavaScript has native support for this feature

• You can't really separate polymorphism from inheritance
• It means one get take many forms
• More specifically, the same method can morph into another one

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + 15);

}

}

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + 15);

}

}

Here we replace ("override") the body
of the sayHi method with another one.

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + 15);

}

}

Here we replace ("override") the body
of the sayHi method with another one.

This person is faking to be 15 younger than he or she is.

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + 15);

}

}

Here we replace ("override") the body
of the sayHi method with another one.

This person is faking to be 15 younger than he or she is.

Can we control the degree of lying?

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to, degree) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + degree);

}

} 15 can become a parameter

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to, degree) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + degree);

}

}

Note for the Nerds! This type of polyphormism is called "overloading":
the same method is accepting different combination of input parameters.

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to, degree) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + degree);

}

}

Note for the Nerds! This type of polymorphism is called "overloading":
the same method is accepting different combination of input parameters.
However, JavaScript does not support overloading and the method is
technically overridden, so that only one method sayHi exists in the end.
Other programming languages will generate two methods, distinguishing them
by their input parameters.

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to, degree) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + degree);

}

}

However, it is kind of weird that who is invoking the sayHi method gets to decide the
degree of lying. It should rather be a fixed property of the person.
What is another approach?

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

this.name = name;

this.year = year;

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

Here we create a new constructor with three
input parameters

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

this.name = name;

this.year = year;

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

let liar = new Liar('Rosie Ruiz', 1953, 5);

liar.sayHi('Stefano'); // Hello Stefano. I am Rosie Ruiz and I was born in 1953

Here we create a new constructor with three
input parameters

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

this.name = name;

this.year = year;

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

let liar = new Liar('Rosie Ruiz', 1953, 5);

liar.sayHi('Stefano'); // Hello Stefano. I am Rosie Ruiz and I was born in 1953

Here we create a new constructor with three
input parameters

Can we do better?

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

super(name, year);

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

super means the super class, that is, the parent
class. Here we are invoking its constructor.

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

super(name, year);

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + (this.year + this.degree);

}

}

super means the super class, that is, the parent
class. Here we are invoking its constructor.

constructor(name, year) {

this.name = name;

this.year = year;

}

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

super(name, year);

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + (this.year + this.degree);

}

}

super means the super class, that is, the parent
class. Here we are invoking its constructor.

constructor(name, year) {

this.name = name;

this.year = year;

}

It's just two lines saved, what is the big advantage here?

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

super(name, year);

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + (this.year + this.degree);

}

}

super means the super class, that is, the parent
class. Here we are invoking its constructor.

constructor(name, year) {

this.name = name;

this.year = year;

}

It's just two lines saved, what is the big advantage here?

We avoid code duplication, this makes maintaining the code much easier.
Some constructors can set up many variables at the same time, even methods.

Variable Declaration in JS

Exercises

Part_2_OOP/encapsulation.js
Part_2_OOP/inheritance_and_poly.js

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

}

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

}

We can extend extending classes.

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

We just 6 lines of code, we created a relatively complex personality thanks to
inheritance and polymorphism: a confused liar! Isn't that amazing?

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

We just 6 lines of code, we created a relatively complex personality thanks to
inheritance and polymorphism: a confused liar! Isn't that amazing?

How can we do better?

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

}
The else word is not needed here.

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

return super.sayHi(to);

}

}
Two return statements are not needed either.

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

return Math.random() > 0.5 ? 'Who am I?' : super.sayHi(to);

}

}
With the ternary operator we saved one extra line without losing readability.
5 lines! Amazing!

Variable Declaration in JS

Advanced Topic: Context

• The value of this is called context

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

Variable Declaration in JS

Advanced Topic: Context

• The value of this is called context

• In JavaScript, surprisingly, it is not fixed, but it changes dynamically depending
on where the function is executed

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

Variable Declaration in JS

Advanced Topic: Context

• The setTimeout function lets you execute some code after a given amount of
time (here 2 seconds).

setTimeout(function() {

// Code to be added

}, 2000);

Variable Declaration in JS

Advanced Topic: Context

• If you use the setTimeout function inside our sayHi method the result might be
disappointing.

• The context, i.e., the value of this, inside the setTimeout function is the
setTimeout function itself.

• This is generally terribly confusing to JS beginners

setTimeout(function() {

// Code to be added

}, 2000);

Variable Declaration in JS

Advanced Topic: Context

sayHi(to) {

setTimeout(function() {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}, 2000);

}

sayHi('Stefano');

// Hello Stefano. I am undefined, and I was born in undefined.

Variable Declaration in JS

Advanced Topic: Context

sayHi(to) {

let that = this;

setTimeout(function() {

return 'Hello ' + to + '. I am ' + that.name +

', and I was born in ' + (that.year + that.degree);

}, 2000);

}

• You can circumvent this problem, by storing the value of this inside another
variable.

• For historical reason, it is customary to call this variable that

Variable Declaration in JS

Advanced Topic: Context

sayHi(to) {

let that = this;

setTimeout(function() {

return 'Hello ' + to + '. I am ' + that.name +

', and I was born in ' + (that.year + that.degree);

}, 2000);

}

• You can circumvent this problem, by storing the value of this inside another
variable.

• For historical reason, it is customary to call this variable that

• Alternatively, you can use an arrow function as a parameter of the setTimeout
function

Variable Declaration in JS

Advanced Topic: Arrow Functions

• Introduced in ES6
• They look weird
• They can shorten function definitions

// Standard way.

function() {

return 'I am a normal function';

}

// Arrow functions.

() => {

return 'I am an arrow function';

}

It isn't much shorter though…

Variable Declaration in JS

Advanced Topic: Arrow Functions

• Introduced in ES6
• They look weird
• They can shorten function definitions

// Standard way.

function() {

return 'I am a normal function';

}

// Arrow functions.

() => {

return 'I am an arrow function';

}

It isn't much shorter though…There are conditions
in which parentheses can be omitted.

Variable Declaration in JS

Exercises

Part_2_OOP/4_this.js

Variable Declaration in JS

Objected Oriented Cooperation Tournament

Part_2_OOP/5_final_exercise.js

But first the theory!

