Lt (lempryl
it

Programming

Fundamentals

Stefano Balietti

attributes
fuel
m

tFuel
setspeed() getspeed)

methods
refuel() 9€

7)
Ll
N
=
>
5=
(%]
s
()]
2
C
)
E
(]
<
C
C
(1]
=
=
(4]
=
O
sl
©
(]
(%)
]
o'
(]
O
C
@
O
(Va)
©
O
(@)
(Va]
c
©
(]
o
o
el
>S5
Ll
-
o
4
o
(]
-
C
(]
O

>
5=
(%]
—
(]
2
C
)
oo
—
)
==
Q
S
Q
T
=)
©
(%)
£
S
o
c
(@)
O
Ll
G
(@)
Q
+—
>
=
o+
(%]
m
—
)
o)
()
=
©
()
—
=
<

—— -

Building Digital Skills: 12-13 March 2020, University of Luzern

Your Instructor: Stefano Balietti

http://stefanobalietti.com

Currently
* Fellow in Sociology Mannheim Center for European Social Research (MZES)
* Postdoc at the Alfred Weber Institute of Economics at Heidelberg University

Previously

- Microsoft Research - Computational Social Science New York City
- Postdoc Network Science Institute, Northeastern University

- Fellow 1QSS, Harvard University

- PhD, Postdoc, Computational Social Science, ETH Zurich

http://stefanobalietti.com/

My Methodology

Interface of computer science, sociology, and economics

Experimental
Methods

%1 HARVARD o,\,o network Microsoft
05 UNIVERSITY L 0], sclence Resea (e h

‘0 institute

ETH:zurich

My Methodology

Interface of computer science, sociology, and economics

Agent-
Based
Models

Experimental
Methods

o . |
108 150 >0 network Microsoft
HARVARD ?<\’°/ networ

mzurICh LS UNIVERSITY 0-%0 institute ResearCh

My Methodology

Interface of computer science, sociology, and economics

Social Network
Analysis

Agent-
Based
Models

Experimental
Methods

o . |
gy £y >0 network Microsoft:
HARVARD oJ5e networ

mzurICh ES) UNIVERSITY 0-%0 institute Resea rCh

My Methodology

Interface of computer science, sociology, and economics

Social Network
Analysis

Machine Learning
for Optimal
Experimental

Design

Agent-
Based
Models

Experimental
Methods

e Ve e n r Microsoft’
ETH:zirich ‘¢ HARVARD o coice

ES
s, UNIVERSITY 0790 institute Resea I'C h

POON"=RD ANV MOG = -~
ANMOCO Rl YANRWVMMHOO

AAAASAANAARRANAARRAAN

ARSRRLRARRRRNAEY

I MMM NN mMB OO -
Noamewoohsawhn

s R - R R ()
BAMAMNMMmMEOD

Building Platforms

: . Patterns Configuration Module
Garch-in-Gretl (GiG) for for Drupal Web Content

econometrics Gretl
o Management System
software READY
2,622 active users, 30,448 downloads

~5000 weekly downloads

| \ RS \
NESSSSE5S| SSE5GE85! 85 | $% \5555585%
|3 - M Fast, scalable JavaScript for large-scale
FIE G N -time onl iment
| -
|88 ss 1 ssNssy g real-time online experiments

\§§ N$SSEEE58 \§5 \s$S \§8

[S \ A \
I $5 /7 \ | $$1 SS58\1 $555888\1 $3 $556588\

|
|
| $8/ S$\| $S| $5 | $51 §§_ | §§| 88 | $8 | 88
| 85 $88\ $8| $§ | SS| S5 §$| S§ | $8 | §8 2 GAME
| 85 $6\S$\88| $§ | S$S| $S65585\| §§ | 85 | §8
I N\
|

I $55% \SS8$| $5__/ $%1 $%5 | $%1 s% $5__/ 5%

I $§5 \$8$ \$§ §51 $§ | $§1 $5 NIl $§ §%
L] .
B M |C|‘050ﬂ www.nodegame.org

\§§ NES NSBESES O \EFE \§F \SISES555 \5955588

Goals of the Seminar:
Fundamentals of Programming

General programming notions: variables, data structures,
operators, conditional logic, and recursion.

Object oriented programming: classes, objects, interfaces and
inheritance, encapsulation, and abstraction.

Writing high-quality code: well-establish design patterns,
unit-testing, linting, documentation, version control system Git
and GitHub, and continuous integration.

Get the Certificate If Attending

1/4 Halt Days

Get the Certificate If Attending

2/4 Halt Days

Get the Certificate If Attending

3/4 Half Days

al Knowledge

4/4 Halt Days

Learning Curve

CONFIDENCE
IN JAVASCRIPT
PROGRAMMING

Half Day 1

A

Half Day

Peak of Inflated Expectations

Plateau of Productivity

Half Day 4

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME

Adapted from: https://en.wikipedia.org/wiki/Hype cycle

https://en.wikipedia.org/wiki/Hype_cycle

Learning Curve

CONFIDENCE A
IN JAVASCRIPT Half Day
PROGRAMMING

Peak of Inflated Expectations

Plateau of Productivity

App
Half Day 4 Development!

Slope of Enlightenment

Trough of Disillusionment

Half Day 1 |} Technology Trigger TIME

Adapted from: https://en.wikipedia.org/wiki/Hype cycle

https://en.wikipedia.org/wiki/Hype_cycle

This Seminar I1s Preparatory for the Next One:
App Development
1. Web App: the golden triad: HTML, CSS, and JavaScript; asynchronous

programming, Node.JS and NPM, REST API calls; introduction to Web
frameworks: JQuery, Twitter Bootstrap, SASS; cloud providers.

https://cordova.apache.org/
https://developer.chrome.com/extensions
https://nodegame.org/
https://ethereum.org/

This Seminar I1s Preparatory for the Next One:
App Development

1. Web App: the golden triad: HTML, CSS, and JavaScript; asynchronous
programming, Node.JS and NPM, REST API calls; introduction to Web
frameworks: JQuery, Twitter Bootstrap, SASS; cloud providers.

1. Mobile App: transform the Web App into a Mobile App with Apache Cordova
(https://cordova.apache.org)

2. Browser Extension: create a simple Chrome-based extension
(https://developer.chrome.com/extensions)

3. Behavioral Experiment: create a simple game theory experiment with the
nodeGame platform (https://nodegame.org).

4. Decentralized App: Introduction to Solidity (JavaScript-based language) to
program blockchain applications on the Ethereum platform
(https://ethereum.org)

https://cordova.apache.org/
https://developer.chrome.com/extensions
https://nodegame.org/
https://ethereum.org/

Programming Fundamentals for You

* Briefly introduce yourself
 What is your level of computer programming?
* Do you know JavaScript already?

* What are you looking to learn in this course?

What is JavaScript?

What is JavaScript?

Let's Start with What is NOT

JavaScript is NOT Java, similar names, but for the
rest rather different

JAVA is a compiled language and while JavaScript is
interpreted

JAVA is generally more complex

JAVA is fading (?)

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GETBACK.
TOWORK!

|f g

https://www.xkcd.com/378/

https://www.xkcd.com/378/

What is Ja

23 Internet Explorer

It is at the core C
with HTML and (

It is what makes

Problerns with thiz \Web page might prevent it fram being displayed properly
& ar functioning properly. 1n the future, you can digplay thiz meszage by
double-clicking the warning icon dizplayed in the status bar.

Alwaps dizplay this meszage when a page contains erors.

| ok | [Hide Details <<

& Mensaje de la pagina localhost:49524:; 2

Line: 71
Char: 1

Jav

dNQC Youwonthe latest Samsung S100 phone. Click on the banner to get it

It h
anc

| Date guardado exitosamente!

vita que esta pagina cree cuadros de dialege adicionales,

oK P4 BN

I'm an annoying alert pop-up!

It is dynamically t
It has first-class fu

You really did, come on click it!

UF [] Prevent this page from creating additional dialogs

OK

" Suppress more dialogs from this page?

QK

OK

What is JavaScript?

* [t is at the core of Web technologies,
with HTML and CSS

* [t is what makes the pages interactive

* JavaScript is high-level, scripted,
and multi-paradigm.

* [t has prototypical object-orientation
and curly-bracket syntax

* [t is dynamically typed
* [t has first-class functions

o JavaScript was developed in May 1995 by
Brendan Eich for Netscape Communications Corp

« Was created in 10 days in order to
accommodate the Navigator 2.0 Beta release

o Initially called Mocha, later renamed LiveScript in
September, and later JavaScript in the same month

https://en.wikipedia.org/wiki/Brendan Eich

https://en.wikipedia.org/wiki/Brendan_Eich

o Microsoft introduced JScript as reverse-engineered implementation of
Netscape's JavaScript in 1996 in Internet Explorer 3

e In 1996 Netscape submitted JavaScript to European Computer
Manufacturers Association (ECMA) to create and industry standard

o In 1997 ECMAScript was released

o« Between 1997 and 2009 5 standard have been released

o July 2015 ECMASCRIPT V6 released.

JavaScript Is Constantly Updated

* ES2016 a.k.a. ES/
 £ES2017 a.k.a. ES3
* ES2018 a.k.a. ES9
* ES2019 a.k.a. ES10
* 52020 a.k.a. ES11

https://medium.com/better-programming/javascript-es2016-features-with-examples-a41b7aead589
https://medium.com/better-programming/javascript-es2017-features-with-examples-877f8406e770
https://medium.com/better-programming/javascript-es2018-features-with-examples-30fda8ac50fa
https://medium.com/better-programming/twelve-es10-features-in-twelve-simple-examples-6e8cc109f3d3
https://medium.com/better-programming/javascript-es2020-features-with-simple-examples-d301dbef2c37

Node.JS

o« Node.JS was created by Ryan Dahl and other
developers working at Joyent in 2009

o« Combination of Google's V8 JavaScript engine, an
event loop, and a low-level |/O API

« hpm, the node package manager, in 2011

e Versions: 0.10,0.12,4.0...12.0!

Advantages of Node.JS

Easy to Learn. If you know JavaScript...otherwise easy to get started,
but careful of pitfalls!

Full Stack JS. Single programming language for client side (e.g., browser) and backend (i.e.,
server)

Freedom to Develop Apps. Web apps and mobile apps, browser extensions, games, decentralized
apps...

Higher performance. Process several request simultaneously thanks to the asynchronous non-
blocking paradigm; highly scalable horizontally and vertically

Many Frameworks and Testing tools. Bootstrap, jQuery, React, Mocha, Ganache, nodeGame...

Huge and Active Community. https://www.quora.com/What-are-the-advantages-of-node-js-1

https://www.quora.com/What-are-the-advantages-of-node-js-1

JavaScript is #1 Language on Github

2014 2015 2016 2017 2018 2019

JavaScript

Python

Java

PHP

C#

C++

TypeScript

Shell

&

Ruby

https://octoverse.github.com/

https://octoverse.github.com/

GitHub.com

developers on GitHub, including 10M new users in 2019.* repositories created in the last year—and 44% more developers created
their first repository in 2019 than in 2018.*

pull requests merged in the last year—and 28% more developers opened issues closed in the last year. That's a lot of decisions made, bugs fixed, and
their first pull request in 2019 than in 2018.* boxes checked.*

https://octoverse.github.com/

https://octoverse.github.com/

Hands On

Open the JavaScript console of your browser:
(ctrl+shift+l or Right Click/Inspect Element)

- a m Ly — S # e

ok £ o = H Coms... | HTML~ | CSS Script DOM Net P | SE®

e Edit body - html | Style ¥ | Computed Layout DOM

= <html= This element haf no style rules. You can
<head=</head= ———A_ — —n_ &

- E T | Simerie | Resoues

=/html =

Metwaork sSources

Timeline

Profiles Audits

Console X

¥<html 118n-values="
dir:textdirection;
hasattribution:hasattribution;
themegravity:themegravity;

bookmarkbarattached: —| font-size: 75%;
bookmarkbarattached:;" class dir="1tr" ki ||
hasattribution="false" themegravity Matched CSS Rules
bookmarkbarattached="true"> body { new tab theme.css:18

» <head=..</head=

¥<body 118n-values=".style.fontFamily:

fontfamily;.style.fontSize:fontsize"
style="font-family: Ubuntu, Arial,
sans-serif; font-size: 75%;"=

N .J S S L B ___l.__'__._ll

g, = a

e

|

b Computed Style

¥ Styles
element.style {

I Show inherited'_

+ K g

font-family: Ubuntu, Arial, sans-serif;

color: M rgbale,e,0,1);

height: 100%;
overflow: » auto;

L. T

%

The Inspector is where you can visualize the live DOM (Document Object
Model) and make changes, including CSS (Cascading Style Sheets) changes.

XY Console [Debugger TN Network {} Style Editor () Performance {F Memory E Storage) |j__| ses X

Eu] Y Filter output Errors Warnings Logs Info Debug CSS XHR Requests [] Persist Logs

» |

The actual names might be slightly different depending on
the browser version and language. For instance, "Inspector”
is sometimes called "Elements."

%

The Inspector is where you can visualize the live DOM (Document Object
Model) and make changes, including CSS (Cascading Style Sheets) changes.

XY Console [Debugger TN Network {} Style Editor () Performance {F Memory E Storage) |j__| ses X

Y Filter output Errors Warnings Logs Info Debu CSS XHR Requests Persist Logs
g g g q

» |

Q Try to open different web sites, how does the content of
the console changes?

Hands On

bahn.de: ots of messy output, including your first and last name

¥ Incoming message 'load’ common.js:46:37
v load(Kunde) common.js:46:37
(i) [iLogic] Connectivity is Connected common.js:137:46
[Cache] Read Kunde from cache (storage): { "khash" : common.js:114:51
"48fefoed13945b104be7f743779d182f76de07od GGG . ave" : { "nachname” : “"Balietti"
, "vorname" : "Stefano" , "anrede" : "0" , "titel" : "1" , "login" : "G }
(i) [iLogic] Data is in cache but outdated/expired. common.js:137:46
(i) [iLogic] -> loading it from server. common.js:137:46
(i) [ilLogic] Ajax call load(Kunde). common.js:137:46
¥ Processing AJAX response for load(Kunde) common.js:46:37
[iLogic] response = common.js:114:51
b Object { status: 200, content: "{ \"khashi" :
. Badl3945b104be717437794d48 pdal/od A", \"name\" : { \"nachname\”
\"Balietti\"), \"vorname\" \"anrede\" : \"@\" , \"titel\" : \"1\" , \"login\" :
}}", etag: "jfu-ETG poprd Lkd I
[Cache] Wrote Kunde to cache (storage): { "khash" : common.js:114:51
"48fef9ed13945b104be7743779d182f76de070da |GG . 'have" : { "nachname" : "Balietti”

"vorname" :

"Stefano” , "anrede"

: Ilall , Iltitelll

2 "%, "login” - NN

;]

Hands On

facebook.com: warning to not fall victim of social engineering phishing attacks

.d8888b. 888 888
d88P Y88b 888 888
Y88b. 888 888

"¥888b. 888888 .d88b. 88888b. 888
"¥88b. 888 d88""88b 888 "88b 888
"888 888 888 888 888 888 Y&P
Y88b d88P YB8b. Y88..88P 888 d88P
"¥Y8888P" "YB888 "Y8BP" 8B888P" 888
888
888
888

This 1s a browser feature intended for
developers. If someone told you to copy
and paste something here to enable a
Facebook feature or "hack"™ someone's
account, it is a scam and will give them
access to your Facebook account.

See https://www.facebook.com/selfxss for more information.

<!--

515/
1111
(18]

-->

Boveaee
111111111
slslalel]
5151
4151}
oaa
oo
ooa
ooa

00e
1
0ee
4151}
oo
oo
ooa
ooa
ooa
0B
111111111
Bodooee

Hands On

5150%]
11111111168 oee
11111111111111311111 oooee
11111111711117111711111111111066008
1111 1111111111111111180
11 5] 1111111166
1 5 15] 1
5 15] ea 1
(41a1) eoeee 1
0008 ©eeeeoed 1
oo 6o BBBEee (5]5]%]
oo bR Boeee
10600 S5 1511 (5]50%]
epees geeeee 1
e0eeoe leeee 1 e
leeeoos o 1 ea
1111111 1 eeee
1111111188 Beoeee
111111111111111118000808
1111111111111860888

80000000

veReeBe

111111111

00BROB

Bee

(51514

eee

eoe

2ee

2ee

slslelel]
11111
slalelale]
S16151%

eoe

eee

2ee

ooe

51614

[$1151%

111111111
Boreoae

NYTimes.com: All the code that's fit to printf()
We're hiring: https://nytimes.wd5.myworkdayjobs.com/Tech

nytimes.com: a job offer!

Q Try to open different web sites, how does the content of
the console changes?

/« Clear any pre-existing output: click on button or type
clear ()

Inspector [>) Console [© Debugger 1 Network {3} Style Editor () Performance {F Memory a Storage D) |j-_l vee X
Y

Filter output Errors Warnings Logs Info Debug CSS XHR Requests [] Persist Logs

» |

%

XY -I:} Inspector Console [Debugger 1T Network {3} Style Editor () Performance {F Memory E Storage) |j__| ses X
Eu] Y Filter output Errors Warnings Logs Info Debug CSS XHR Requests [] Persist Logs
» |

Type something in the console using the command:

console.log('This 1s my very own text');

%

XY -I:} Inspector Console [Debugger 1T Network {3} Style Editor () Performance {F Memory E Storage) |j__| ses X
Eu] Y Filter output Errors Warnings Logs Info Debug CSS XHR Requests [] Persist Logs
» |

Now do it... feel the power of the alert!

alert ('This 1s my revenge!');
alert('again and again...');

Preparation: Have You Got?

« An account on GitHub: https://github.com/

e The text editor Atom https://atom.io/

« The environment Node.JS https://nodejs.org/en/

e The version control system Git https://git-scm.com/

https://github.com/
https://atom.io/
https://nodejs.org/en/
https://git-scm.com/

Are Git and Node.JS Installed Properly?

Open Git Bash (Win) or Can you reproduce the following
a Terminal (OSX/Linux) or a similar output?

MINGWES: /o Users/balistef

Pt

Git installed $ git --version
git version 2.22.0.windows.1

i

Node.JS installed $ node --version
v12.15.0

5|

Seminar Structure

Theory with examples D
Do-it yourself exercises

Seminar Structure

Theory with examples D
Do-it yourself exercises

Exercises extend what is covered in the slides. Some of you will find some exercises
easy and others more difficult. Don't worry if you don't finish them all:
Do them at your own pace!

Exercise O: Download the exercises

Or better said:
clone the GitHub repository of the
exercises

Exercise O: Download the exercises

Welcome

Exercise OB: Configure Atom

Let's open the slide deck "Configure Atom"

How | Learnt JavaScript

Great tutorial from novice to JavaScript Ninja:
http://javascript.info/

10+years ago...

http://javascript.info/

Part 1: Basics

http://javascript.info/

Variables 2

let message = 'Hello!';

http://javascript.info/

http://javascript.info/

Variables 2

let message = 'Hello!';

Keyword announcing that what follows is the name of a new variable

http://javascript.info/

http://javascript.info/

Variables A

let message = 'Hello!';

The name of the variable. It is case sensitive.
It references the value throughout the rest of the code.
Depending on the type of its value, it might expose other methods/properties.

http://javascript.info/

http://javascript.info/

Variables 2

let message = 'Hello!';

Keyword that assigns what is to its right to the variable to the left.
Other programming language use <- to indicate the directionality.

http://javascript.info/

http://javascript.info/

Variables 2

let message = 'Hello!';

The value of assignment: a string wrapped in quotes

http://javascript.info/

http://javascript.info/

Variables 2

let message = 'Hello!';

The semicolon signals that the command is finished.

http://javascript.info/

http://javascript.info/

Variables 5

let message =
'"Hello!';

Q Is this valid?

http://javascript.info/

Variables
http://javascript.info/
Variables %
oo

let message =
'"Hello!';

@) 's this valid? YES.
Commands can span over multiple lines, therefore it is
important to use the semicolon to specify where they end.

http://javascript.info/

http://javascript.info/

Variables 2

let message;
message = 'Hello!';

Q Is this valid?

http://javascript.info/

Variables
http://javascript.info/
Variables %
oo

let message;
message = 'Hello!';

@) 's this valid? YES.
When do you want to separate creation and assignment?

http://javascript.info/

http://javascript.info/

Variables

let message; Creation

Value to assign not available immediately
THINGS HAPPENS ... 4= Uncertainty about which code block will assign it

Need to be available across different code blocks
(more on variable scoping later)

message = 'Hello!'; Assignment

http://javascript.info/

http://javascript.info/

Variables

let message; Creation

Value to assign not available immediately
THINGS HAPPENS ... 4= Uncertainty about which code block will assign it

Need to be available across different code blocks
(more on variable scoping later)

message = 'Hello!'; Assignment

Notice we don't use let again, otherwise it will throw an error.

http://javascript.info/

http://javascript.info/

Variables 5

let message = 'Hello!';

// value changed.
message = 'World!';

alert (message) ;

http://javascript.info/

http://javascript.info/

N\

Strings must be wrapped in quotes: ' or " are equivalent.
N

Variables

let message = 'Hello!';

// value changed.
message = 'World!';

alert (message) ;

http://javascript.info/

http://javascript.info/

N\

Strings must be wrapped in quotes: ' or " are equivalent.
N

Variables

let message = 'Hello!';

Text following // is a comment and it is not read by JavaScript
// value changed.
message = 'World!';

alert (message) ;

http://javascript.info/

http://javascript.info/

N\

Strings must be wrapped in quotes: ' or " are equivalent.
N

Variables

let message = 'Hello!';

Text following // is a comment and it is not read by JavaScript

// value changed.
message = 'World!';

Opens a popup in the Browser o0,

alert (message) ;

http://javascript.info/

Main Variable Types in JS

These are primitive types

let a = 1; // number

let b = 'Hello world!'; // string

let ¢ = false; // boolean

let d = function(p) { return p+l; }; // function

let e = { key: 'value' }; // object

let £ = ["valuel", 3, c]; // array (type 1is object)

Main Variable Types in JS

let a = 1; // number

let b = 'Hello world!'; // string

let ¢ = false; // boolean These are composite types
let d = function(p) { return p+l; }; // function

let e = { key: 'value' }; // object

let £ = ["valuel", 3, ¢]; // array (type is object)

Main Variable Types in JS

let a = 1; // number

let b = 'Hello world!'; // string

let ¢ = false; // boolean

let d = function(p) { return p+l; }; // function

let e = { key: 'value' }; // object

let £ = ["valuel", 3, c]; // array (type 1is object)

TWO IMPORTANT CONCEPTS:

« Variables are loosely (or "dynamically") typed
« Variables are scoped within the block in which they are declared

Variables Are Dynamically Typed

var message = 'Hello!';
// value changed.
message = 'World!';

alert (message) ;

// type of value changed to number

message = 2019;

// string concatenation

(works also with numbers).

alert ('This 1s year ' + message);

Variables Are Dynamically Typed

var message = 'Hello!';
// value changed.
message = 'World!';
alert (message) ;

Variable are "loosely typed," that is their
type (string, number, etc.) can be changed
after assignment

// type of value changed to number
message = 2019;

// string concatenation (works also with numbers).
alert ('This 1s year ' + message);

Variables Are Dynamically Typed

var message = 'Hello!';

// value changed.

message = 'World!';

alert (message) ; Plus is used to concatenate strings.

Variable are converted on-the-fly when
they are manipulated together with others
of a different type. Need to be careful
because it can create unexpected behavior.

// type of value changed A
message = 2019;

// string concatenation (works also with numbers).
alert ('This 1s year ' + message);

Type conversions

"'7" _I_ 3;

LI L B 3,.

Type conversions

"y 4 3; "73"; // Converted to String

nymn 3. 4; // Converted to Number

Type conversions

"y 4 3; "73"; // Converted to String

nymn 3. 4; // Converted to Number

2

Why is that?

Type conversions

"y 4 3; "73"; // Converted to String

nymn 3. 4; // Converted to Number

2

Why is that?

JavaScript made its best guess. Plus is the operator for string
concatenation, hence everything became a string. Minus can only
be for arithmetic operations, hence the conversion to number.

Do the Math

Operator Operation Example

+ Addition 1+1; // 2

- Subtraction 1-1; // 0
Division 1/10; // 0.1
Multiplication 2%2; // 4

% Remainder 7%4; // 1

Do the Math

Operator Operation Example

+ Addition 1+1; // 2

- Subtraction 1-1; // 0
Division 1/10; // 0.1
Multiplication 2%2; // 4

% Remainder 7%4; // 1

++ Add 1 to the current value (also --) let a = 1; a++; // 2

+= Add something to current value (also *=, -=, /=) let a = 1; a+=2; // 3

Do the Math

Operator Operation Example
+ Addition 1+1; // 2
- Subtraction 1-1; // 0
Division 1/10; // 0.1
Multiplication 2%2; // 4
% Remainder 7%4; // 1
++ Add 1 to the current value (also --) let a = 1; a++; // 2
+= Add something to current value (also *=, -=, /=) let a = 1; a+=2; // 3
*x Exponentiation 3**2; // 9
Math The Math object offers several operations Math.random () ; // 0.1231

Math.floor (3.451); // 3

Do the Math

Operator Operation Example
+ Addition 1+1; // 2
- Subtraction 1-1; // 0
Division 1/10; // 0.1
Multiplication 2%2; // 4
% Remainder 7%4; // 1
++ Add 1 to the current value (also --) let a = 1; a++; // 2
+= Add something to current value (also *=, -=, /=) let a = 1; a+=2; // 3
kX Exponentiation 3*%*2; // 9
Math The Math object offers several operations Math.random() ; // 0.1231

Math.floor(3.451); // 3

The round parentheses signhal a method invocation, what is inside the
parentheses is an input parameter. More on this later...

Conditional Operators: If/Else Statements

1f (CONDITION) {
// Execute 1f condition is TRUE
}
else {
// Execute 1if condition is FALSE

You say that if/else statements are "branching off"
your code, because only one of the two branches will
be executed at run-time.

Conditional Operators: If/Else Statements

1f (CONDITION) {
// Execute if condition i1s TRUE

J

else {
// Execute 1f condition i1s FALSE

J

If/Else can be chained and the order matters.

Conditional Operators: If/Else Statements

1f (CONDITION1) {
// Execute if condition is TRUE

}

else 1f (CONDITIONZ) {
// Execute if conditionl is FALSE and
// condition2 is TRUE.

J

@ Will one of the two branches always be executed?

Conditional Operators: If/Else Statements

1f (CONDITION1) {
// Execute if condition is TRUE

}

else 1f (CONDITIONZ) {
// Execute if conditionl is FALSE and
// condition2 is TRUE.

J

@ Will one of the two branches always be executed?
Not if both conditions are false.

Conditional Operators: If/Else Statements

1f (CONDITION1) {
// Execute if condition is TRUE

}

else 1f (CONDITIONZ) {
// Execute if conditionl is FALSE and
// condition?2 is TRUE.

}

else {
// If both conditions above are FALSE,
// I will be executed.

Logical Operators

1f (CONDITION1 && CONDITIONZ) {

&8& (AND) // Executed only if both conditions are TRUE
}
if (CONDITION1 || CONDITION2) f{
|| (OR) // Executed if either condition is TRUE
}
1f (YCONDITION) {

I (NOT) // Executed only if condition is FALSE

Logical Operators

1f (CONDITION1 && CONDITIONZ) {

&8& (AND) // Executed only if both conditions are TRUE
}
if (CONDITION1 || CONDITION2) f{

|| (OR) // Executed if either condition is TRUE

"Short-circuit"

if (YCONDITION) { operators. The second

I (NOT) // Executed only if conditic condition is evaluated
} only if needed.

Comparisons

Like assignments, comparisons have an operator which separates
a left-hand side term and right-hand side term, e.g., 3> 1, and
they return a Boolean value (true or false).

Operator Operation Example

> Greater than 2>1; // true
>= Greater or equal than l>=1¢ // true
< Less than 10<1; // false
<= Less or equal than 3<=3; // true
== Equals to 2==2; // true

=== Strictly equals to 2===2; // true

Comparisons

Like assignments, comparisons have an operator which separates
a left-hand side term and right-hand side term, e.g., 3> 1, and
they return a Boolean value (true or false).

Operator Operation Example

> Greater than 2>1; // true
>= Greater or equal than l>=1¢ // true
< Less than 10<1; // false
<= Less or equal than 3<=3; // true
== Equals to 2==2; // true
=== Strictly equals to 2===2; [/ true

0 Why do we need two types of equals?

Comparisons

Like assignments, comparisons have an operator which separates
a left-hand side term and right-hand side term, e.g., 3> 1, and
they return a Boolean value (true or false).

Operator Operation Example

> Greater than 2>1; // true
>= Greater or equal than l>=1¢ // true
< Less than 10<1; // false
<= Less or equal than 3<=3; // true
== Equals to 2==2; // true
=== Strictly equals to 2===2; [/ true

Q Why do we need two types of equals? Because of type conversions

https://dorey.github.io/JavaScript-Equality-Table/

Variable Comparison; === VS ==

o .. * If the cell isfilled, it means the result of
: l. a comparison is true, otherwise false
1 I. The table on the diagonal reads:
“true"
"false" .
ot] if (true === true) // true
0" I- if (false === false) // true
0
null -
undefined .
Infinity -
-Infinity .

[1
{}
[[1]
(0]
[1]
NaN

—+
-
=
1]

TUTlur-

1]
1
1
N

I T - T T T S S e S D T

N

"true"

=
1]
=1

l===l|l'l
LR S

=
—
—

OO0

undefined

OO0 s

H H

=

=h =h

[

=

B M
~ ~+ o+

LOOOOOOEOOOOCOCC e s
AlEEEEEEEEE e EEe
OO e Ie e s
OO0 /OO0
N I I
S D
N I
S D
N I
S D
N N
T
AlEEEE EENEEEEEEEE
N N O
S D ¢
S I O
S
S I
AlEEEEEEEEEEEEEEEEEE N

O]
OO

13p
TuTjut

—
= = = " — —
i [1+] [1:] = o = ~ M ~ ot s = @ =D

1

N

AN EE. N (.
I
B OOOCICICIC] peursepun

ul B EEEENN
wn [JCICICICICICICIC I 1
ndetined [[||][][] JCICICIC 0]S
meanity [[LI JCICICICIC IO
aminity [LI JCICICICICIC]
gl H EEEEEE EEn
o JUIOIOIOICICICICIC]
WAl B EEEEEE EEENN
Ul l EEEN EEENEEEN
SN (N[N[..
v [DOOOOOOO00OO0O0O00

ANEEEE EEEEEN W W

I I ¢
ANEEEEEEEN EEEN W .
D00 OOOOOOOOOOOOOO, .

[]
O
[]
[
L
[
[
[
[
[]
L
[
[
[
[
L
[
[
[

O
[]
L
[
L
L
[]
L
[
[
L
[
[
[
[
L
L
[
[
[

https://dorey.github.io/JavaScript-Equality-Table/

—+
-
=
1]

1
mmmmmm

Al EEEEEEEEEEEEEEEEn AEEEEN B

AR EEEEEEEEEEEEEEER ...
O T e AREEE B

o | L@ L[// Using double equal. B 83
 JOJ0O@O00000000 i (1 == true) { OOOo0000
f::: %%g%ggg%g%g%g% console.log('This can't be true!'); %g%g%g%
AR EE HEEEN B

R EEEEEE EEER HEEE NN
Ol EEEEEEN RN EEEE EREEEEEEEEN

~ JOOOOOOOO] ol [EEEEEE EEEE B EEE

v [0 OO OO0 AN EEEEEEEE EEEEEEEn
wserines [0 anderinea (]| JC /O
meinity | || | | | || LCAN NN EEEEEEE EEEEEEn
tottatty ([I I I] cxwrsnsey (] J I OO
v OO0 000000] Nl [EEEEEE EEEEEEEEEN

o 000000 o U000 OO0

w1 00000 Wil H EEEEEE EEEEEEEEER
e (OO0 ONN I EEEE EEEEEEEEEEEN

SHE N EEEEEEEN ol [l EEEE EEEEEREREEEERRN

wan [0 OOI000] vt [0)OO0 0O

https://dorey.github.io/JavaScript-Equality-Table/

TUTJUI-

1
1
N

= »m = = a0 = 3 —
= o~ M ot ot e e e 3 = LA i T 1 I R == B = e~ D @t A e s e @ =

https://dorey.github.io/JavaScript-Equality-Table/

Jur
TUTJUI-

1
1
1
N

—+
-
=
1]

= = =
i M M = @ = = = D o+ ot — o — @ =D

Al EEEEEEEEEEEEEEEEn AEEEEN B

AR EEEEEEEEEEEEEEER ...
O T e AREEE B

o | L@ L[// Using double equal. B 83
VOB i f (1 == true) | OO0
f::: %%g%ggg%g%g%g[console.log ("This can't be true!"); %g%g%g%
-+ OO OOROO0000 HEEEN B

o | @8 // will print "This can't be true!™ EEEE NN
a0 e e e e —————_ mEEEEEe
EEEEEEEEEE EREEEEEEEEN ll I EEEEEE EEEN B EEN
SR EEEEEENE NN AN EEEEEEEE EEEEEEEn
andetined | |||\ 0 @] undetined | || [|)0 |0 L L0)0 (@A
meinity | || |) LCAN NN EEEEEEE EEEEEEn
tettntty () J I IO I EEEENEEE EEEEEE
o []OOO0O00O000CC Nl [EEEEEE EEEEEEEEEN

o OO0 OO0 o U000 OO0

w1 O 0O0O0000000] Wil H EEEEEE EEEEEEEEER
Ol EEEEEEEEEEEN ONN I EEEE EEEEEEEEEEEN

SEE N EEEEEEEEREREN ol [l EEEE EEEEEREREEEERRN

wi [0 000000000 v [0 00O OO0

https://dorey.github.io/JavaScript-Equality-Table/

TUTJUI-

1
1
N

an.l

= Ay c w = = 1 = = -
lmml—lﬂ:\l—--p—'mp-o-.-r.—..-hl—lcnl—lm 'l‘Dl‘DI-'ﬂhl—l:v—'rDH-r-l--—'.-h-—lml-m

true IDETU DD AREEREE N
rase [I 0) TGO IO IO IO IO OO OO IO IO N
e e AREEE W

o @ [// Using triple equal. B EE)

2 000000000000 i (1 === true) { %g%g%g%
f::: %%@%@é%@%@%@%& } console.log ("This can't be true!"); %g%g%g%
AR 5)))) - ERREE BN
S e EEEEEEEE EEEEEEEEEEE -+ O JURO00OmMO00000000000
S HEEREEEEEER EEEEEEEEEE ol [EREEEE EEEE B EEE

SRR EEREEEE EEEEEEEEN AN EEEEEEEE EEEEEEEn
undetined | || |0 |[I |0 [0 10)0 0 I R I ndetaned | || || [| |0 10 I @
= e mne e
o O)COICCIOO0OCOOCOOOOOOC O] Nl H EEEEEE EEEEEEEEEE

o JOOOOOOOOOCIOOC o L OOIOOOOOOOOOOOOOOOCC]

w1 O 0O0O0000000] Gl [EEREEEE EREEEEREEN
e [))OOOOOOOOCCO0] CNll I EEEE EEEEEEEEEREN

SN EEREREERREERER ol [HEEE EEEEEEEEEEREN

wi [0 000000000 v [0 IO OO0

an.l

E h -
l I'D I'D I—' ﬂ'.\ I—' = l_' [4+] —+ (e T e T = = j+1]

https://dorey.github.io/JavaScript-Equality-Table/

TUTJUI-

1
1
1
N

= wm = = . = 3
M M e @ = = D ot o e A e @ D

e [(<] DD AEEEEN B
rase [0 I TSI 0 00O IO IOOOIOI0] ...
e e AREEE B

o | L@ L // Using triple equal. B 83

A L 4fF (1 === true) { OO0
f::: %%g%ggg%g%g%g% console.log ("This can't be true!"); %g%g%g%
-+ OO OOROO0000 HEEEN B

o @ // will print nothing EEEE NN
a0 e e e e SE———————— e
EEEEEEEEEE EREEEEEEEEN il B EEEEEE EEEN B EEN

SN EEEEEEE EEEEEEEEN DN EEEEEEE EEEEEEEN
e e EEEEEEEEEE EEEEEEEN andetsnea ||| J) /O
neinsty [)OO0 000000 LCAN NN EEEEEEE EEEEEEn
Y A EEEEREEEEEEE EREEEE I EEEENEEE EEEEEE
o 0000000000000 Nl i EEEEEE EEEEEEEEEN

o OO0 OO0 o U000 OO0

w1 O 0O0O0000000] Wil H EEEEEE EEEEEEEEER
Ol EEEEEEEEEEEN ONN I EEEE EEEEEEEEEEEN

SEE N EEEEEEEEREREN ol [l EEEE EEEEEREREEEERRN

wi [0 000000000 v [0 00O OO0

https://dorey.github.io/JavaScript-Equality-Table/

Variable Comparison: === vs ==

— true . if {true) { /* executes */ }
false if (false) { /* does not execute */ }
1 - if (1) { /* executes */ }
0 if (0) { /* does not execute */ }
-1 . if (-1) { /* executes */ }
"true" . if ("true”) { /* executes */ }
"false" . if (“false”) { /* executes*/]
o Ao . if ("17) { /* executes */ } U Se alway :::
"p" . if ("0") { /* executes */ }
e . if ("-17) { /* executes */ } I h d
CEnl., (unless you have a good reason)
null if {null) { /* does not execute */ }
undefined if (undefined) { /* does not execute */ }
Infinity . if (Infinity) { /* executes */ }
-Infinity . if {-Infinity) [/* executes */ }
[] . if ([]) { /* executes */ }
{} . if ({J) { 7 executes */ }
(11 [l aon o executes s
[0] - if ([0]) { /* executes */ }
[1] . if ([1]) { /* executes */ }
MNaN if (NaM} { /* does not execute */ }

Block Scope

let favoriteFood = 'lasagne';

1f (favoriteFood === 'lasagne') {
console.log('Well Done!');
favoriteFood += ' with a lot of cheese';
let secondFavorite = 'pizza';

}
Q What will it print?

console.log(favoriteFood) ;
console.log(secondFavorite) ;

Block Scope

let favoriteFood = 'lasagne'
1f (favoriteFood === 'lasagne') {
console.log('Well Done!');
favoriteFood += ' with a lot of cheese'
let secondFavorite = 'pizza'
Q What will it print?
console.log(favoriteFood); // 'lasagne with a lot of cheese';

console.log(secondFavorite); // undefined (error is thrown)

Block Scope

let favoriteFood = 'lasagne';

1f (favoriteFood === 'lasagne')| {
console.log('Well Done!');
favoriteFood += ' with a lot of cheese';
let secondFavorite = 'pizza';

}
secondFavorite lives only within the block in which it is

defined. Blocks are delimited by curly brackets.

console.log(favoriteFood); // 'lasagne with a lot of cheese';
console.log(secondFavorite); // undefined (error is thrown)

String Methods

favoriteFood // 'lasagne with a lot of cheese’;

String Methods

favoriteFood // 'lasagne with a lot of cheese’;

let length = favoriteFood.length; // 28

The dot operator grants access to the property of objects.
Wait wasn't favoriteFood a string? Yes, but it exposes
methods and properties like an object.

String Methods

favoriteFood // 'lasagne with a lot of cheese’;

let length = favoriteFood.length; // 28

The dot operator grants access to the property of objects.
Wait wasn't favoriteFood a string? Yes, but it exposes
methods and properties like an object.

Here we learn that there are 28 characters in the string. That
is a bit long for a single favorite food. Let's investigate

String Methods

favoriteFood // 'lasagne with a lot of cheese';
let length = favoriteFood.length; // 28

let index = favoriteFood.indexOf ('with a lot of cheese');

The method indexOf returns the index of the first occurrence of the string
passed as input parameter, or -1 if not found.

String Methods

favoriteFood // 'lasagne with a lot of cheese';
let length = favoriteFood.length; // 28
let 1ndex = favoriteFood.indexOf ('with a lot of cheese');

1f (1ndex !'== -1) {
console.log ('Uhm...are you American??');
favoriteFood = favoriteFood.substring(0, index) .trim();

J

substring returns a portion of the original string as specified by its input parameters.

String Methods

favoriteFood // 'lasagne with a lot of cheese';
let length = favoriteFood.length; // 28
let 1ndex = favoriteFood.indexOf ('with a lot of cheese');

1f (1ndex !'== -1) {
console.log ('Uhm...are you American??');
favoriteFood = favoriteFood.substring(0, index) .trim() ;

}
Trim removes white beginning and trailing white spaces. We chained it to the results
of the previous method.

Other Ways to Declare Variables

var message = 'I am an old-timer!’';

const MESSAGE = 'I am immutable';

Other Ways to Declare Variables

var message = 'I am an old-timer!’';

Var variables are prior to ES6, still valid, but its usage
is not recommended any more.

const MESSAGE = 'I am immutable';

Other Ways to Declare Variables

var message = 'I am an old-timer!’';

Var variables are prior to ES6, still valid, but its usage
is not recommended any more.

const MESSAGE = 'I am immutable';

Constants are variables that will throw an error if you
attempt to re-assign them. But not if you change them!

More on vars https://levelup.gitconnected.com/stop-using-var-to-declare-variables-in-javascript-6cOcaec16f43

https://levelup.gitconnected.com/stop-using-var-to-declare-variables-in-javascript-6c0caec16f43

Exercises

Part_1 Basics/1_primitive_types.js

* Objects are containers for variables indexed by a key (in other
programming languages they may be called maps or dictionaries)

 They can contain variables of any type inside

http://javascript.info/

var user = {
name: "John", // by key "name" store value "John"
age: 30 // by key "age" store value 30

by

name
age

user =——jH

http://javascript.info/

http://javascript.info/

// We now add a new property

// Note! JavaScript is case sensitive
user.1sAdmin = true;

// Delete an existing one.

delete user.age;

name
isAdmin

user =i

http://javascript.info/

http://javascript.info/

// We now add a new property

// Note! JavaScript is case sensitive
user.1sAdmin = true;

// Delete an existing one.

delete user.age;

name
isAdmin

The dot operator accesses the value of a given
property inside the object. User '

http://javascript.info/

http://javascript.info/

// We now add a new property

// Note! JavaScript is case sensitive
user.1sAdmin = true;

// Delete an existing one.

delete user.age;

name
isAdmin

The dot operator accesses the value of a given
property inside the object. User '
If the property was not previously defined (as
in this case), it will be simply created.

http://javascript.info/

Looping in Objects (For In)

for (let property in user) {

console.log(property + ': ' + user[propertvy]);

Looping in Objects (For In)

for (let property 1n user) {
1f (user.hasOwnProperty (property)) {

console.log(property + ': ' + user|[propertyl]):;
}
} - hasOwnProperty is necessary to
avoid contamination of other
// Output properties belonging to the object
and not added by the user

// name: John

. . - MUST USE ALWAYS.
// i1isAdmin: true

Looping in Objects (For In)

for (let property 1n user) {
1f (user.hasOwnProperty (property)) {

console.log(property + ': ' + user|[propertyl]):;
}

} - The square parentheses allows one to access
the value of the property of an object, when

// Output. the property name is contained in a variable.

// name: John - The following notations are equivalent:

| | user.name; // John

// isAdmin: true user['name'l; // John;

var property = "name";

user [property]; // John

Looping in Objects (For In)

for (let property 1n user) {
i1f (user.hasOwnProperty (property)) {
console.log (property + ': ' + user[property]);

}

} - The + sign is used to concatenate strings

// Output.
// name: John
// 1sAdmin: true

* Arrays are containers for variables indexed by a number
 They are faster to iterate through than objects
e Like objects, they can contain variables of any type

http://javascript.info/

var fruits = | :m % _ =£
"Apple", EL’ % E E
"Orange", E:L f::lF—l S_J E_‘:r
"Pear", - . - =
"Lemon"

17 2 | 1| 2| 3

http://javascript.info/

http://javascript.info/

var fruits = | 0 % _ =£
"Apple", = £ H 0
"Orange", -l o @ L
"Pear", :I ? :D_ :_1
"Lemon"

i 2 | 1| 2| 3

Arrays are collections of items indexed by a number.
The first item has index 0O, the second item has index 1, and so on...
Arrays can contain items of any type (string, number, etc.) and also mix them.

http://javascript.info/

http://javascript.info/

var fruits = | :ElJ % _ =£
"Apple", El’ % E E
"Orange", -:E:L :::H éIJ_J E_‘:r
"Pear", - - - -
"Lemon"

17

2

fruits.length;

http://javascript.info/

http://javascript.info/

var fruits = | :ElJ % _ =£
eple”, 2 & &
"Orange", -:E:L :::H rélfj_;r E_‘_J-
"Pear", - - - -
"Lemon"

17

2

fruits.length; // 4

http://javascript.info/

http://javascript.info/

var fruits = |

w o = f=
"Apple", 'E-_;_ % E E
"Orange", -:E:L :::H rélfj_;r E_‘_J-
"Pear", _ - - -
"TLemon"

17

2

fruits.length; // 4
fruits|[2];

http://javascript.info/

http://javascript.info/

var fruits = |

w o = f=
"Apple", 'E-_;_ % E E
"Orange", -:E:L :::H rélfj_;r E_‘_J-
"Pear", _ - - -
"TLemon"

17

2

fruits.length; // 4
fruits([2]; // "Pear"

http://javascript.info/

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let 1 = 0 ; 1 < fruits.length ; 1++) {
// Code to be added here.

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I like ';

// This is a "for loop".

for (let 1 = 0 ; 1 < fruits.length ; 1++) {
// Code to be added here.

}

A for loop repeats the code inside the parenthesis as long as a condition is true
(we will add the code later).

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1++) {

It is divided in 3 parts, separated by ; (semicolon).

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I like ';
// This is a "for loop".
for (let 1 =0 ; i < fruits.length ; i++) {

It is divided in 3 parts, separated by ; (semicolon).
Initialization

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1++) {

It is divided in 3 parts, separated by ; (semicolon).
Initialization ; Condition

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1++) {

It is divided in 3 parts, separated by ; (semicolon).
Initialization ; Condition ; Increment (i++ meansi=i+ 1)

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I 1like ';

// This is a "for loop".

for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += fruits[i] + ', ';

}

alert (message) ;

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I 1like ';

// This is a "for loop".

for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += fruits[i] + ', ';

J

aler The first iteration i =0, the second iteration i = 1, the third iterationi = 2, and
the fourth and last iteration i = 3. In this way, we can access all the items in the
array and create a text with all the fruits we like.

Arrays and For Loops

var fruits = ["Apple", "Orange",
"Pear", "Lemon"];

var message = 'I 1like ';

// This is a "for loop".

for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += fruits[i] + ', ';

J

alert (mescHowever, there is a grammatical problem! The text will end with
a comma, instead that with a dot. Do you know how to fix it?

Exercises

Part_1 Basics/2_objects and loops.js

Functions

. Functions are reusable blocks of codes
. They may take input parameters and may return an output value
. Functions abstract the complexity of code operations inside their body

Inputs — Function — Output

Functions

// Standard function.
// Functions are reusable blocks of codes.
function showPerson (person) {

let message = 'Hello, ';

message = message + 'person.name';

alert (message) ;

Functions

Note! Functions are also called "methods" or
"callbacks." The definition is always the same.

// Standard function.
// Functions are reusable blocks of codes.
function showPerson (person) {

let message = 'Hello, ';

message = message + 'person.name';

alert (message) ;

Functions

// Standard function.

// Functions are reusable block This line is the function declaration.
It specifies the name of the function

function showPerson (person) { as well as input parameters

let message = 'Hello, ';
message = message + 'person.name';

alert (message) ;

Functions

// Standard function.

// Functions are reusable block This line is the function declaration.
It specifies the name of the function

function showPerson (person) { as well as input parameters

let message = 'Hello, ';
message = message + 'person.rpersonistheinput parameter

alert (message) ;

Functions

// Standard function.
// Functions are reusable blocks of codes.
function showPerson (person) {

let message = 'Hello, ';

message = message + 'person.name';

alert (message) ;

Functions

// Standard function.
// Functions are reusable blocks of codes.
function showPerson (person) {

let message = 'Hello, ';

message = message + 'person.name';

alert (message) ; The part wrapped in curly brackets is called the

} "body" of the function, it specifies what the it
actually does internally

Functions

// Execute the function.
// Remember! We have already defined
// the variable user before.

showPerson (user) ;

Function Invocation

// Execute the function.
// Remember! We have already defined
// the variable user before.

showPerson (user) ;

Note! Functions are "invoked" or "executed" or "called."
The terms are synonymous.

Function Invocation

// Standard function.
function showPersonZ (person) {
let message = 'Hello, ';

message = message t+ 'person.name';

1f (person.isAdmin === true) {
message += 'I notice that you are an admin';

J

alert (message) ;

Functions

// Standard function.

function showPersonZ (person) {

let message = 'Hello, '; Thisisan "if statement." If the condition
is true, it will execute the text inside the

message = message + 'per
J J P parentheses

1f (person.isAdmin === true) {
message += 'I notice that you are an admin';

J

alert (message) ;

Functions

// Standard function.

function showPersonZ (person) The number of equals matters

let message = 'Hello, ';- 1 equal for assignment to variables
- 2 equals for comparison

— v
MeES5age message + per. 3 equals for strict comparison
1f (person.isAdmin === true) {
message += 'I notice that you are an admin';

J

alert (message) ;

Input Parameters

// Internally modifies input.
function doSomething (obj, num, str) {

obj.a = 10;
num = 1;
str = 'a';
}
var obj = {}, num = 0, str = '';

doSomething (obj, num, str);

console.log(obj) ; What will the final values of the object,
console.log (num) ; the string, and the number be, after they have
console.log(str); been modified by the function?

Input Parameters

// Internally modifies input.
function doSomething(obj, num, str) {

obj.a = 10; .
_ Objects are passed as a
num = 1; :
fpr o= ot reference (to an address in
st = a7y memory), while numbers and
J strings are copies (primitive
var obj = {}, num = 0, str = '"; types cannot be referenced).

doSomething (obj, num, str);
Modifying a copy does not

console.log(obj); // { a: 10 } affect the value outside the
console.log(num); // O function, modifying the
console.log(str); // ' reference does.

Our Previous Example: Arrays and For Loops

var message = 'I like ';

// This is a "for loop".

for (var 1 = 0 ; 1 < fruits.length ; 1i++) {
message += fruits[i];

1f (1 < (fruits.length — 1)) {
message += "', ';

}

else {
message += '.';

J
J

alert (message) ;

Our Previous Example: Arrays and For Loops

var message = 'I like ';

// This is a "for loop".

for (var 1 = 0 ; 1 < fruits.length ; 1i++) {
message += fruits[i];
1f (1 < (fruits.length — 1)) {

message += ', ';
}
else { e That's a lot of code inside
message +t= '.'; the for-loop. How to make it
} more compact and more
} general with a function?

alert (message) ;

Functions with Returns

We create a function for joining words

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += join(fruits[i], 1, fruilts.length, "!");

Functions with Returns

function join(word, 1ndex, arraySize, endSign L)
1f (1ndex === arraySize -1) word += "', "';
else word += endSign;

return word;

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += join(fruits[i], 1, fruilts.length, "!");

Functions with Returns

function joiln(word, 1ndex, arraySize, endSign L)
1f (1ndex === arraySize -1) word += "', "';
else word += endSign;

return word;

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += join (fruits[i], 1, fruits.length, "!");

Functions with Returns

function joiln(word, 1index, arraySize, endSign L)
1f (1ndex === arraySize -1) word += "', ';
else word += endSign;

return word;

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += join(fruits[i], 1, fruits.length, "!");

Functions with Returns

function joiln (word, 1ndex, arraySize, endSign L) A
1f (1ndex === arraySize -1) word += "', ';
else word += endSign;

return word;

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += join(fruits[i], 1, fruits.length, "!");

Functions with Returns

function join(word, 1ndex, arraySize, endSign L)
1f (1ndex === arraySize -1) word += "', "';
else word += endSign;

return word;

var message = 'I like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1i++) {
message += join(fruits([i], 1, fruits.length, "Vi");

Functions with Returns

function join (word, 1ndex, arraySize, endSign = '.') {
1f (1ndex === arraySize -1) word += "', "';
else word += endSign;

return word; _ . ,
This last value is optional, because the

} function defines a default parameter.

var message = 'I 1like ';
// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1i++) {

message += join(fruits([i], 1, fruits.length, "Vi");

Functions with Returns

1

function joiln(word, 1ndex, arraySize, endSign = '.')
if (index === arraySize -1) word += ',';
else word += endSign;

return word; If-else branches can be written without parentheses, and
J they apply to the next line, as delimited by semicolon (;).

var message = 'I 1like ';

// This is a "for loop".
for (let 1 = 0 ; 1 < fruits.length ; 1i++) {

message += join(fruits[i], 1, fruits.length, "!");

{

Functions with Returns

function joln(word, 1ndex, arraySize, endSign = '.') {
1f (1ndex === arraySize -1) word += "', "';
else word += endSign;

return word;
} The return keyword makes available

outside of the function the modified

var message = 'T J]ike ' variable word.

// This is a "for loop".
for (var 1 = 0 ; 1 < fruits.length ; 1i++) {
message += join(fruits[i], 1, fruits.length, "!");

Ternary Operator

We can make a new function join2 even more compact. The ternary operator ? merges
together an if/else statement in one line, separating the two branches with :

function joiln(word, 1ndex, arraySize, endSign = '.') {
if (index === arraySize -1) word += ',';
else word += endSign;
return word;

}

function joinZ (word, 1ndex, arraySize, endSign = '.'")
word += index === arraySize -1 ? ',' : endSign;
return word;

Ternary Operator

We can make a new function join3 even more compact by merging the ternary
operator and the return statement in one line.

function joinZ (word, 1index, arraySize, endSign = '.')
word += index === arraySize -1 ? ',' : endSign;
return word;

J

function join3(word, 1i1ndex, arraySize, endSign = '.') {
return word += (index === arraySize -1 ? ',' : endSign);

J

Q Is join3 better than join2?

Ternary Operator

We can make a new function join3 even more compact by merging the ternary
operator and the return statement in one line.

function joinZ (word, 1index, arraySize, endSign = '.')
word += index === arraySize -1 ? ',' : endSign;
return word;

}
function join3(word, 1i1ndex, arraySize, endSign = '.') {
return word += (index === arraySize -1 ? ',' : endSign);

J

Is join3 better than join2? NO. join3 is much less readable
and in the long-term it will increase the maintenance costs.

2

Private Variables

Variables declared inside a function are expected to stay private,
that is not accessible outside of the function.

Private Variables

Variables declared inside a function are expected to stay private,
that is not accessible outside of the function.

function foo (bar) {
let a = bar;
}
foo (10) ;
console.log(a); // undefined

Private Variables

function foo () {

l>< a = 1; What happens is we do
} not use the 1et keyword?
foo () ;

console.log(a); // undefined

Private Variables

function foo () {

l>< a = 1; What happens is we do
} not use the 1et keyword?
foo () ;

console.log(a); // undefined

JS will try to access the global variable a

Private Variables

function foo () {

l>< a = 1; What happens is we do
} not use the 1et keyword?
foo () ;

console.log(a); // undefined

JS will try to access the global variable a
What if there is no global variable a?

Private Variables

function foo () {

l>< a = 1; What happens is we do
} not use the 1et keyword?
foo () ;

console.log(a); // und%}{éed 1

JS will try to access the global variable a = Variable leaking into the global scope
What if there is no global variable a?

Exercises

Part_1 Basics/3_functions.js

Catching Errors

 When your code runs you do not generally have full controls on the value of
all the variables

* For instance, a user may input a text instead of a number in a form, and this
may cause errors

Catching Errors

* When your code runs you do not generally have full controls on the value of
all the variables

* For instance, a user may input a text instead of a number in a form, and this
may cause errors

* They look ugly:

Catching Errors

 Try and Catch Statements prevent the errors to "bubble up" and let your system
fail gracefully.
 Simply wrap the code that may raise an error in a try and catch clause

try {
let a = null;

a.length;
// Throws an error and may cause your app to stop.

}

catch (error) ({
a = 'was supposed to be a string.';
console.log('sorry my bad. Carry on.');

Main JS Operators Cheatsheet
__engishName ____Jussee _________________lBemple _______

Single quote Wraps strings 'hello’
" Double quote Wraps strings "hello again"
/ Slash Comments (two in a row) // comment
; Semicolon Ends a line (not mandatory, but recommended) 'hello'

Colon Separates a key and a value in an object {key:1}

Dot Access an object property (or creates it if not found) object.key // 1
, Comma Separate properties in objects {keyl:1,key2:2}
() Parentheses or Brackets Invoke a function, wrap condition statements alert('hello') ;

If (counter >10) ...

[Square Parentheses (or Define an array, access elements of the array [1, 2, 3];

Brackets) array[0]; // 1
{} Curly Parentheses (or Define objects, function bodies, blocks of code {key:1}

Brackets) function() { ... }

for(..){..}

Exercises

Part 1 Basics/4 try catch.js
Part_1 Basics/5 final exercise.js

If You Finish Everything (or if you need a break)

Level 1

https://lab.reaal.me/jsrobot/

https://lab.reaal.me/jsrobot/

Part 2: Object Oriented Programming (OOP)

Object Oriented Programming (OOP)

e JavaScript is multi-paradigm, it has features of the OOP paradigm
and of the procedural programming (PP) paradigm

e OOP and PP are two conceptually opposite coding philosophy

* PP revolves stateless procedures (functions)

 OOP revolves around stateful objects and classes, and on precise
relationships between them.

Objects and Classes Diagram

reading order

Book ! E
abstract class : . ' st
'\\ ISBN: Etrlng[l:lj;l] fid} J!’ Author altributes <
title: String . o wrole . .
T summary y 1. 1 name: String _q______‘_/:'] enumeration q;)
publisher Alk biography: String | -::Iatall type: Q
publication date | i / E
number of pages / * O
language [! aenumerations >
x“:__-'_- multiplicity f AccountState ,O
generalization / ,-HE = == Active g
/ : Frozen P
«entity» Book Item & «entity» Account / ! Closed a
barcode: String [0..1] {id} |0.12 -« borrowed number {id} M : E
stereotyped 3y tag: RFID [0..1] {id} history: History[0..*] -- -l 'Ic
class — isReferanceOnly 0.3 o reserved opened; Date wn
slate: AccountState account 8
" O
* * accounts ?ﬂ
aggrfgamn______ 5
association Illr 1 (%]
—__________b- / E
T} < Library Patron E
records o]0
name name)
7 4 address «usen .- address S

| - 1
| - —

| -

com |::|:-5i’ri|::-n = - g
4 vinterfaces = ;
e == Search - _ «uses Librarian ;
Catalog -=::::j_g "7~ L name E
s ainterfaces |- -~ wuser %)
Manage _8-
interface realization b

usage dependency

https://www.uml-diagrams.org/class-diagrams-overview.html

Objects and Classes Diagram

. Co@e{r Glass
Objects and Class

Name John
Age 12
Objects Color: Faif
/| socuae
—--JONN can eat more
Student “ —eesJOhn can drink more
Name “ NI\ —-John can run fast
age | a
Color e Name: Sophia
o Age 10
Sex h’ Color: Fair
\ 1A Sex Female
: i —--JONN can eat less
=2 | |- John can drink less
—--=JOhn can run slow
caiig | ¥
Drinking :ame Lily
: ge: 11
Runnmg 5 '\\ Color Dark
e L Sex: Female

----- John can eat more
—==JOhn can drink more
—==JOhN can run fast

(c) www.coderglass.com

Image source: https://www.coderglass.com/java/java-object-and-class.php

https://www.coderglass.com/java/java-object-and-class.php

Objects and Classes Diagram

. Cwev Glass
Objects and Class

Name: John
Age 12
Objects Color: Faif
/| Soc e
—--JONN can eat more
Student ﬂ —===JOhN can drink more
Name i\ —--John can run fast
age | a
Color e Name: Sophia
N Age 10
Sex h, Color: Fair
AN i; N Sex Female
: ‘ —--JONN can eat less
er | | - John can drink less
—--John can run slow
Eating | ﬁ
Drinking ;.’ame Lily
; ge: 11
—_— ‘ '\\ Color Dark
e L Sex: Female

----- John can eat more
—==JOhn can drink more
=== JOhN Can run fast

Classes are blueprints for objects

Image source: https://www.coderglass.com/java/java-object-and-class.php

https://www.coderglass.com/java/java-object-and-class.php

https://en.wikipedia.org/v

Objects and Classes Diagram

| &) Coder Glass
Objects and Class

Student

Name

age |
Color
Sex

Behaviors

Eating |
Drinking
Running

Classes are blueprints for objects

Image source: https://www.coderglass.com/java/java-object-and-class.php

https://www.coderglass.com/java/java-object-and-class.php
https://en.wikipedia.org/wiki/Blueprint

https://en.wikipedia.org/v

Classes
define
properties

and
methods

Objects and Classes Diagram

Name
age |

Objects and Class

Student

=)

Color
Sex

Behaviors

Eating |

L
>

=

A
“

Drinking
Running

;g)

Classes are blueprints for objects

Name: John

Age 12

Color: Fair

Sex Male

—==JOhn can eat more
----- John can drink more
—-=JOhn can run fast

Name Sophia

Age 10

Color: Fair

Sex Female

—=JOhnN can eat less
----- John can drink less
~---JOhn can run slow

Name: Lily
Age 11
Color Dark

L Sex: Female

—-==JOhN Can eat more
—=John can drink more
—==JOhN can run fast

Image source: https://www.coderglass.com/java/java-object-and-class.php

Coder Glass

Objects
instantiate
classes by
adding a live
state to its
properties

https://www.coderglass.com/java/java-object-and-class.php
https://en.wikipedia.org/wiki/Blueprint

JavaScript Classes

class Person {

constructor () {
this.name = 'Stefano Balietti';

J

sayH1i () {
console.log('Hi! I am ' + this.name);

J

JavaScript Classes

class Person {

constructor () {

this.name = 'Stefano Balietti';
}
sayH1 () {
console.log('Hi! T am ' + this.name);

J

Notice! This is the news ES6 definition of a class.
It is much easier than using ES5 prototypical definition, even if
behind the scenes it is exactly the same. Exercise available!

JavaScript Classes

class Person {

constructor () {
this.name = 'Stefano Balietti';
}
sayH1 () {
console.log('H1i! T am ' + this.name);

J
J

// Create an object using the new operator
let stefano = new Person();

JavaScript Classes

class Person {
constructor () {

this.name = 'Stefano Balietti';
}
sayH1 () |
console.log ("Hi!The new operator invokes the constructor method
} of the class. The constructor is a special method
} which is executed only once, upon creation.

// Create an object using the new operator
let stefano = new Person();

JavaScript Classes

class Person {
constructor () {

this.name = 'Stefano Balietti';
}
sayH1 () |
console.log ("Hi!The new operator invokes the constructor method
} of the class. The constructor is a special method
} which is executed only once, upon creation.

// Create an object
let stefano = new Pe Inthiscase, itis adding the property 'name’ with

the value 'Stefano Balietti'.

The Constructor

constructor () {
this.name = 'Stefano Balietti';

J

The constructor is a compact way of creating new objects. What it does is the
following:

The Constructor

constructor () {
this.name = 'Stefano Balietti';

J

The constructor is a compact way of creating new objects. What it does is the

following:
constructor () {
let person = {};
person.name = 'Stefano Balietti';

return person;

J

The Constructor

constructor () {
this.name = 'Stefano Balietti';

J

The constructor is a compact way of creating new objects. What it does is the
following:

constructor () {
let this = {};
this.name = 'Stefano Balietti';
return this;

The Instantiated Object

// Create an object using the new operator
let stefano = new Person|();
console.log(stefano)

In the technical language the
variable stefano is the live
"instance" of the class Person.

{

name: 'Stefano Balietti1i

}

Q Couldn't we directly create the object? What is the advantage of using a
constructor function?

The Instantiated Object

// Create an object using the new operator
let stefano = new Person|();
console.log(stefano)

In the technical language the
variable stefano is the live
"instance" of the class Person.

{

name: 'Stefano Balietti1i

}

@ Couldn't we directly create the object? What is the advantage of using a
constructor function?

1. For complex object is faster because the blueprint is already loaded in memory
2. It allows for complex objects!

The Instantiated Object

// Create an object using the new operator
let stefano = new Person|();
console.log(stefano)

In the technical language the
variable stefano is the live
"instance" of the class Person.

{

name: 'Stefano Balietti1i

}

@ Couldn't we directly create the object? What is the advantage of using a
constructor function?

1. For complex object is faster because the blueprint is already loaded in memory
2. It allows for complex objects! stefano.sayHi();//I am Stefano Balietti

A More Complex Person

class Person { Here the constructor is accepting input
constructor (name, vyear) { parameters to customize the instance.
this.name = name;
this.year = year;

}

sayH1 (to) {
return 'Hello " + to + '. I am ' + this.name;
', and I was born in ' + this.year;

A More Complex Person

class Person { Here the constructor is accepting input

constructor (name, vyear) { parameters to customize the instance.
this.name = name;
this.year = year;

}
sayH1 (to) {

return 'Hello " + to + '. I am ' + this.name;
', and I was born in ' + this.year;
}
}
let brendan = new Person('Brendan', 1961);

brendan.sayHi ('Stefano');
// '"Hello Stefano. I am Brendan and I was born in 1961"

Exercises

Part 2 OOP/classes.js

4 Pillars of OOP

Encapsulation Abstraction

_ Polymorphism
Inheritance

Four Pillars of Object Oriented Programming

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

Encapsulation Abstraction

_ Polymorphism
Inheritance

Four Pillars of Object Oriented Programming

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Encapsulation

Encapsulation means that you can hide some of the methods and properties of a

class declaring them as private, so they are not accessible outside of the class
This prevents erroneous or malicious manipulation of the object by other entities

It also reduces the complexity of the API for other external developers

Encapsulation

* Encapsulation means that you can hide some of the methods and properties of a
class declaring them as private, so they are not accessible outside of the class.

* This prevents erroneous or malicious manipulation of the object by other entities

* |t also reduces the complexity of the APl for other external developers

e JavaScript does not natively support encapsulation
* You can do it with closures, but it is complex topic, so we don't apply it here

e Here some references for the curious ones:
e https://medium.com/@luke smaki/javascript-es6-classes-8a34b0a6720a
 https://www.intertech.com/Blog/encapsulation-in-javascript/

https://medium.com/@luke_smaki/javascript-es6-classes-8a34b0a6720a
https://www.intertech.com/Blog/encapsulation-in-javascript/

4 Pillars of OOP

Encapsulation Abstraction

_ Polymorphism
Inheritance

Four Pillars of Object Oriented Programming

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Inheritance

* Inheritance means that classes can share portion of codes with each other, by
defining directional relationships of dependence, such as Parent/Child
e JavaScript has native support for this feature

OOP Pillar 1: Inheritance

class Liar extends Person {

// We are going to add code here.

OOP Pillar 1: Inheritance

Here we extend the previously defined
class Liar extends Person { Person class.
It means that the Liar class will have all
the methods (including the constructor)
// We are going to add code here. and properties of the parent class.

4 Pillars of OOP

Encapsulation Abstraction

_ Polymorphism
Inheritance

Four Pillars of Object Oriented Programming

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Polymorphism

* Inheritance means that classes can share portion of codes with each other, by
defining directional relationships of dependence, such as Parent/Child
e JavaScript has native support for this feature

* You can't really separate polymorphism from inheritance
* |t means one get take many forms
* More specifically, the same method can morph into another one

OOQOP Pillar 2: Polymorphism

class Liar extends Person {

sayH1i (to) {
return 'Hello " + to + '". I am '" 4+ this.name +
', and I was born in ' + (this.year + 15);

OOQOP Pillar 2: Polymorphism

class Liar extends Person {

Here we replace ("override") the body
of the sayHi method with another one.

sayH1i (to) {
return 'Hello " + to + '". I am '" 4+ this.name +
', and I was born in ' + (this.year + 15);

OOQOP Pillar 2: Polymorphism

class Liar extends Person { Hearewe replace ("override") the body

of the sayHi method with another one.
sayH1i (to) {

return 'Hello " + to + '". I am '" 4+ this.name +
', and I was born in ' + (this.year + 15);

} This person is faking to be 15 younger than he or she is.

OOQOP Pillar 2: Polymorphism

class Liar extends Person { Hearewe replace ("override") the body

of the sayHi method with another one.
sayH1i (to) {

return 'Hello " + to + '". I am '" 4+ this.name +
', and I was born in ' + (this.year + 15);

} This person is faking to be 15 younger than he or she is.

Q Can we control the degree of lying?

OOQOP Pillar 2: Polymorphism

class Liar extends Person {
sayHi (to, degree) ({

return 'Hello " + to + '". I am '" 4+ this.name +
', and I was born in ' + (this.year + degree);

} 15 can become a parameter

OOQOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi (to, degree) ({
return 'Hello ' + to + '. I am ' + this.name +
', and I was born in ' + (this.year + degree);

}
Note for the Nerds! This type of polyphormism is called "overloading":

the same method is accepting different combination of input parameters.

OOQOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi (to, degree) ({
return 'Hello ' + to + '. I am ' + this.name +
', and I was born in ' + (this.year + degree);

Note for the Nerds! This type of polymorphism is called "overloading":
the same method is accepting different combination of input parameters.

} However, JavaScript does not support overloading and the method is
technically overridden, so that only one method sayHi exists in the end.
Other programming languages will generate two methods, distinguishing them
by their input parameters.

OOQOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi (to, degree) ({
return 'Hello ' + to + '. I am ' + this.name +
', and I was born in ' + (this.year + degree);

J

However, it is kind of weird that who is invoking the sayHi method gets to decide the
degree of lying. It should rather be a fixed property of the person.
What is another approach?

More Polymorphism

class Liar extends Person {
constructor (name, year, degree) {

this.name = name;
this.year = year; Here we create a new constructor with three
this.degree = degree; inputparameters

}
sayH1 (to) {
return 'Hello ' + to + '. I am ' + this.name +
', and I was born in ' + (this.year + this.degree);

More Polymorphism

class Liar extends Person {
constructor (name, year, degree) {

this.name = name;
this.year = year; Here we create a new constructor with three
this.degree = degree; inputparameters

}
sayH1 (to) {
return 'Hello ' + to + '. I am ' + this.name +
', and I was born in ' + (this.year + this.degree);

}
let liar = new Liar ('Rosie Ruiz', 1953, 5);
liar. SaYHj_ ('Stefano') ;y // Hello Stefano. I am Rosie Ruiz and I was born in 1953

More Polymorphism

class Liar extends Person {
constructor (name, year, degree) {

this.name = name;
this.year = year; Here we create a new constructor with three
this.degree = degree; inputparameters

}
sayH1 (to) {
return 'Hello ' + to + '. I am ' + this.name +
', and I was born in ' + (this.year + this.degree);

’/

}
let liar = new Liar('Rosie Ruiz', 1953, 5);0 Can we do better?

liar. SaYHj_ ('Stefano') ;y // Hello Stefano. I am Rosie Ruiz and I was born in 1953

More Polymorphism

class Liar extends Person {
constructor (name, year, degree) {
super (name, year),;

this.degree = degree; super means the super class, that is, the parent

class. Here we are invoking its constructor.

J

sayH1 (to) {
return 'Hello " + to + '". I am ' + this.name +

', and I was born 1n ' + (this.year + this.degree);

More Polymorphism

class Liar extends Person {
constructor (name, year, degree) {
super (name, year),;

this.degree = degree; super means the super class, that is, the parent

class. Here we are invoking its constructor.

}
sayH1 (to) {
return 'Hello " + to + '. I an

', and I was born 1n ' + (this

} }

constructor (name, year) {
this.name = name;
this.year = year;

More Polymorphism

class Liar extends Person {
constructor (name, year, degree) {
super (name, year),;

this.degree = degree; super means the super class, that is, the parent

class. Here we are invoking its constructor.

}
sayH1 (to) {
return 'Hello " + to + '. I an

', and I was born 1in ' + (this

} }

constructor (name, year) {
this.name = name;
this.year = year;

}
Q It's just two lines saved, what is the big advantage here?

More Polymorphism

class Liar extends Person {
constructor (name, year, degree) {
super (name, year),;

this.degree = degree; super means the super class, that is, the parent

class. Here we are invoking its constructor.

}
sayH1 (to) {
return 'Hello " + to + '. I an

', and I was born 1n ' + (this

} }

constructor (name, year) {
this.name = name;
this.year = year;

}
Q It's just two lines saved, what is the big advantage here?

We avoid code duplication, this makes maintaining the code much easier.
Some constructors can set up many variables at the same time, even methods.

Exercises

Part 2 OOP/encapsulation.js
Part 2 OOP/inheritance and_poly.js

More Polymorphism and Inheritance

class ConfusedLiliar extends Liar {
sayHi (to) |
1f (Math.random() > 0.5) return 'Who am I?';
else return super.sayHi (to);

More Polymorphism and Inheritance

class ConfusedLiar extends Liar { We can extend extending classes.
sayHi (to) |
1f (Math.random() > 0.5) return 'Who am I?';
else return super.sayHi (to);

More Polymorphism and Inheritance

class ConfusedLiliar extends Liar {
sayHi (to) |
1f (Math.random() > 0.5) return 'Who am I?';
else return super.sayHi (to);

J

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

More Polymorphism and Inheritance

class ConfusedLiliar extends Liar {
sayHi (to) {
1f (Math.random() > 0.5) return 'Who am I?';
else return super.sayHi (to);

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

We just 6 lines of code, we created a relatively complex personality thanks to
inheritance and polymorphism: a confused liar! Isn't that amazing?

More Polymorphism and Inheritance

class ConfusedlLiar extends Liar {
sayHi (to) {
1f (Math.random() > 0.5) return 'Who am I?';
else return super.sayHi (to);

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

We just 6 lines of code, we created a relatively complex personality thanks to
inheritance and polymorphism: a confused liar! Isn't that amazing?

@ How can we do better?

More Polymorphism and Inheritance

class ConfusedLiliar extends Liar {
sayHi (to) |
1f (Math.random() > 0.5) return 'Who am I?';
else return super.sayHi (to);

J

The else word is not needed here.

More Polymorphism and Inheritance

class ConfusedLiliar extends Liar {
sayHi (to) |
1f (Math.random() > 0.5) return 'Who am I?';
return super.sayHi (to);

J

Two return statements are not needed either.

More Polymorphism and Inheritance

class ConfusedlLiar extends Liar {
sayH1 (to) {
return Math.random() > 0.5 ? '"Who am I?' : super.sayHi(to);

J

With the ternary operator we saved one extra line without losing readability.
5 lines! Amazing!

Advanced Topic: Context

e The value of this is called context

sayH1 (to) {
return 'Hello ' + to + '. I am ' + this.name +
', and I was born 1in ' + (this.year + this.degree);

Advanced Topic: Context

e The value of this is called context

sayH1 (to) {
return 'Hello ' + to + '. I am ' + this.name +
', and I was born 1in ' + (this.year + this.degree);

* InJavaScript, surprisingly, it is not fixed, but it changes dynamically depending
on where the function is executed

Advanced Topic: Context

 The setTimeout function lets you execute some code after a given amount of
time (here 2 seconds).

setTimeout (function () {
// Code to be added

b, 2000);

Advanced Topic: Context

* If you use the setTimeout function inside our sayHi method the result might be
disappointing.

setTimeout (function () {
// Code to be added

b, 2000);

* The context, i.e., the value of this, inside the setTimeout function is the
setTimeout function itself.
 This is generally terribly confusing to JS beginners

Advanced Topic: Context

sayH1 (to) {

setTimeout (function () {

return 'Hello " + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);
b, 2000);

sayH1 ('Stefano');
// Hello Stefano. I am undefined, and I was born in undefined.

Advanced Topic: Context

* You can circumvent this problem, by storing the value of this inside another
variable.
* For historical reason, it is customary to call this variable that

sayH1 (to) {
let that = this;
setTimeout (function () {
return 'Hello " + to + '. I am ' + that.name +
', and I was born in ' + (that.year + that.degree);
}, 2000);

Advanced Topic: Context

* You can circumvent this problem, by storing the value of this inside another
variable.
* For historical reason, it is customary to call this variable that

sayHi (to) {
let that = this;
setTimeout (function () {

return 'Hello ' + to + '. I am ' + that.name +
', and I was born in ' + (that.year + that.degree);
b, 2000);

e Alternatively, you can use an arrow function as a parameter of the setTimeout
function

Advanced Topic: Arrow Functions

* |Introduced in ES6
* They look weird
 They can shorten function definitions

// Standard way.
function () {
return 'I am a normal function';

It isn't much shorter though...

// Arrow functions.

() => {

return 'I am an arrow function';

Advanced Topic: Arrow Functions

* |Introduced in ES6
* They look weird
 They can shorten function definitions

// Standard way.
function () {
return 'I am a normal function';

| It isn't much shorter though...There are conditions
// Arrow functions. 4 which parentheses can be omitted.

() => {

return 'I am an arrow function';

Exercises

Part 2 OOP/4 this.js

Objected Oriented Cooperation Tournament

Part_ 2 OOP/5 final_exercise.js

But first the theory!

