
Programming
Fundamentals
(in JavaScript) 2: OOP

@balietti | stefanobalietti.com | @nodegameorg | nodegame.org

Stefano Balietti
Center for European Social Science Research at Mannheim University (MZES)
Alfred-Weber Institute of Economics at Heidelberg University

Variable Declaration in JS

Part 2: Object Oriented Programming (OOP)

Prototype vs Property

Object Oriented Programming (OOP)

• JavaScript is multi-paradigm, it has features of the OOP paradigm
and of the procedural programming (PP) paradigm

• OOP and PP are two conceptually opposite coding philosophy
• PP revolves stateless procedures (functions)
• OOP revolves around stateful objects and classes, and on precise

relationships between them.

Prototype vs Property

Objects and Classes Diagram

h
tt

p
s:

//
w

w
w

.u
m

l-
d

ia
gr

am
s.

o
rg

/c
la

ss
-d

ia
gr

am
s-

o
ve

rv
ie

w
.h

tm
l

https://www.uml-diagrams.org/class-diagrams-overview.html

Prototype vs Property

Objects and Classes Diagram

https://www.coderglass.com/java/java-object-and-class.phpImage source:

https://www.coderglass.com/java/java-object-and-class.php

Prototype vs Property

Objects and Classes Diagram

https://www.coderglass.com/java/java-object-and-class.phpImage source:

Classes are blueprints for objects

https://www.coderglass.com/java/java-object-and-class.php

Prototype vs Property

Objects and Classes Diagram

https://www.coderglass.com/java/java-object-and-class.phpImage source:

Classes are blueprints for objects

https://en.wikipedia.org/wiki/Blueprint

https://www.coderglass.com/java/java-object-and-class.php
https://en.wikipedia.org/wiki/Blueprint

Prototype vs Property

Objects and Classes Diagram

https://www.coderglass.com/java/java-object-and-class.phpImage source:

Classes are blueprints for objects

https://en.wikipedia.org/wiki/Blueprint

Classes
define
properties

and
methods

Objects
instantiate
classes by
adding a live
state to its
properties

https://www.coderglass.com/java/java-object-and-class.php
https://en.wikipedia.org/wiki/Blueprint

Prototype vs Property

Discuss Exercise

• Let's pick a topic from the list below. Discuss and draw a UML
(Unified Modelling Language) class diagram for at least one super
class and two child classes.

• SHAPES
• ANIMALS
• PROFESSORS
• ACTORS
• SPORTLERS
• CELESTIAL BODIES
• NATIONALITIES

Public Properties

Wikipedia: https://en.wikipedia.org/wiki/Unified_Modeling_Language

Public Methods

https://en.wikipedia.org/wiki/Unified_Modeling_Language

Prototype vs Property

JavaScript Classes

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

Prototype vs Property

JavaScript Classes

Notice! This is the news ES6 definition of a class.
It is much easier than using ES5 prototypical definition, even if
behind the scenes it is exactly the same. Exercise available!

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

Prototype vs Property

JavaScript Classes

// Create an object using the new operator

let stefano = new Person();

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

Prototype vs Property

JavaScript Classes

// Create an object using the new operator

let stefano = new Person();

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

The new operator invokes the constructor method
of the class. The constructor is a special method
which is executed only once, upon creation.

Prototype vs Property

JavaScript Classes

// Create an object using the new operator

let stefano = new Person();

class Person {

constructor() {

this.name = 'Stefano Balietti';

}

sayHi() {

console.log('Hi! I am ' + this.name);

}

}

The new operator invokes the constructor method
of the class. The constructor is a special method
which is executed only once, upon creation.

In this case, it is adding the property 'name' with
the value 'Stefano Balietti'.

Prototype vs Property

The Constructor

The constructor is a compact way of creating new objects. What it does is the
following:

constructor() {

this.name = 'Stefano Balietti';

}

Prototype vs Property

The Constructor

constructor() {

let person = {};

person.name = 'Stefano Balietti';

return person;

}

The constructor is a compact way of creating new objects. What it does is the
following:

constructor() {

this.name = 'Stefano Balietti';

}

Prototype vs Property

The Constructor

constructor() {

let this = {};

this.name = 'Stefano Balietti';

return this;

}

The constructor is a compact way of creating new objects. What it does is the
following:

constructor() {

this.name = 'Stefano Balietti';

}

Prototype vs Property

The Instantiated Object

// Create an object using the new operator

let stefano = new Person();

console.log(stefano)

{

name: 'Stefano Balietti

}

In the technical language the
variable stefano is the live
"instance" of the class Person.

Couldn't we directly create the object? What is the advantage of using a
constructor function?

Prototype vs Property

The Instantiated Object

// Create an object using the new operator

let stefano = new Person();

console.log(stefano)

{

name: 'Stefano Balietti

}

In the technical language the
variable stefano is the live
"instance" of the class Person.

Couldn't we directly create the object? What is the advantage of using a
constructor function?

1. For complex object is faster because the blueprint is already loaded in memory
2. It allows for complex objects!

Prototype vs Property

The Instantiated Object

// Create an object using the new operator

let stefano = new Person();

console.log(stefano)

{

name: 'Stefano Balietti

}

In the technical language the
variable stefano is the live
"instance" of the class Person.

Couldn't we directly create the object? What is the advantage of using a
constructor function?

1. For complex object is faster because the blueprint is already loaded in memory
2. It allows for complex objects! stefano.sayHi();//I am Stefano Balietti

Variable Declaration in JS

A More Complex Person

class Person {

constructor(name, year) {

this.name = name;

this.year = year;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + this.year;

}

}

Here the constructor is accepting input
parameters to customize the instance.

Variable Declaration in JS

A More Complex Person

class Person {

constructor(name, year) {

this.name = name;

this.year = year;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + this.year;

}

}

let brendan = new Person('Brendan', 1961);

brendan.sayHi('Stefano');

// 'Hello Stefano. I am Brendan and I was born in 1961'

Here the constructor is accepting input
parameters to customize the instance.

Variable Declaration in JS

Exercises

Part_2_OOP/classes.js

Prototype vs Property

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Prototype vs Property

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Variable Declaration in JS

Encapsulation

• Encapsulation means that you can hide some of the methods and properties of a
class declaring them as private, so they are not accessible outside of the class

• This prevents erroneous or malicious manipulation of the object by other entities
• It also reduces the complexity of the API for other external developers

Variable Declaration in JS

Encapsulation

• Encapsulation means that you can hide some of the methods and properties of a
class declaring them as private, so they are not accessible outside of the class.

• This prevents erroneous or malicious manipulation of the object by other entities
• It also reduces the complexity of the API for other external developers

• JavaScript does not natively support encapsulation
• You can do it with closures, but it is complex topic, so we don't apply it here

• Here some references for the curious ones:
• https://medium.com/@luke_smaki/javascript-es6-classes-8a34b0a6720a
• https://www.intertech.com/Blog/encapsulation-in-javascript/

https://medium.com/@luke_smaki/javascript-es6-classes-8a34b0a6720a
https://www.intertech.com/Blog/encapsulation-in-javascript/

Prototype vs Property

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Variable Declaration in JS

Inheritance

• Inheritance means that classes can share portion of codes with each other, by
defining directional relationships of dependence, such as Parent/Child

• JavaScript has native support for this feature

Variable Declaration in JS

OOP Pillar 1: Inheritance

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I am class ' + (this.year + 15);

}

}

// We are going to add code here.

Variable Declaration in JS

OOP Pillar 1: Inheritance

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I am class ' + (this.year + 15);

}

}

Here we extend the previously defined
Person class.

It means that the Liar class will have all
the methods (including the constructor)
and properties of the parent class.// We are going to add code here.

Prototype vs Property

Picture source: https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

4 Pillars of OOP

https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727

Variable Declaration in JS

Polymorphism

• Inheritance means that classes can share portion of codes with each other, by
defining directional relationships of dependence, such as Parent/Child

• JavaScript has native support for this feature

• You can't really separate polymorphism from inheritance
• It means one get take many forms
• More specifically, the same method can morph into another one

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + 15);

}

}

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + 15);

}

}

Here we replace ("override") the body
of the sayHi method with another one.

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + 15);

}

}

Here we replace ("override") the body
of the sayHi method with another one.

This person is faking to be 15 younger than he or she is.

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + 15);

}

}

Here we replace ("override") the body
of the sayHi method with another one.

This person is faking to be 15 younger than he or she is.

Can we control the degree of lying?

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to, degree) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + degree);

}

} 15 can become a parameter

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to, degree) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + degree);

}

}

Note for the Nerds! This type of polyphormism is called "overloading":
the same method is accepting different combination of input parameters.

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to, degree) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + degree);

}

}

Note for the Nerds! This type of polymorphism is called "overloading":
the same method is accepting different combination of input parameters.
However, JavaScript does not support overloading and the method is
technically overridden, so that only one method sayHi exists in the end.
Other programming languages will generate two methods, distinguishing them
by their input parameters.

Variable Declaration in JS

OOP Pillar 2: Polymorphism

class Liar extends Person {

sayHi(to, degree) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + degree);

}

}

However, it is kind of weird that who is invoking the sayHi method gets to decide the
degree of lying. It should rather be a fixed property of the person.
What is another approach?

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

this.name = name;

this.year = year;

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

Here we create a new constructor with three
input parameters

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

this.name = name;

this.year = year;

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

let liar = new Liar('Rosie Ruiz', 1953, 5);

liar.sayHi('Stefano'); // Hello Stefano. I am Rosie Ruiz and I was born in 1953

Here we create a new constructor with three
input parameters

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

this.name = name;

this.year = year;

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

let liar = new Liar('Rosie Ruiz', 1953, 5);

liar.sayHi('Stefano'); // Hello Stefano. I am Rosie Ruiz and I was born in 1953

Here we create a new constructor with three
input parameters

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

this.name = name;

this.year = year;

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

let liar = new Liar('Rosie Ruiz', 1953, 5);

liar.sayHi('Stefano'); // Hello Stefano. I am Rosie Ruiz and I was born in 1953

Here we create a new constructor with three
input parameters

Can we do better?

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

super(name, year);

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

}

super means the super class, that is, the parent
class. Here we are invoking its constructor.

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

super(name, year);

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + (this.year + this.degree);

}

}

super means the super class, that is, the parent
class. Here we are invoking its constructor.

constructor(name, year) {

this.name = name;

this.year = year;

}

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

super(name, year);

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + (this.year + this.degree);

}

}

super means the super class, that is, the parent
class. Here we are invoking its constructor.

constructor(name, year) {

this.name = name;

this.year = year;

}

It's just two lines saved, what is the big advantage here?

Variable Declaration in JS

More Polymorphism

class Liar extends Person {

constructor(name, year, degree) {

super(name, year);

this.degree = degree;

}

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name;

', and I was born in ' + (this.year + this.degree);

}

}

super means the super class, that is, the parent
class. Here we are invoking its constructor.

constructor(name, year) {

this.name = name;

this.year = year;

}

It's just two lines saved, what is the big advantage here?

We avoid code duplication, this makes maintaining the code much easier.
Some constructors can set up many variables at the same time, even methods.

Variable Declaration in JS

Exercises

Part_2_OOP/encapsulation.js
Part_2_OOP/inheritance_and_poly.js

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

}

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

}

We can extend extending classes.

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

We just 6 lines of code, we created a relatively complex personality thanks to
inheritance and polymorphism: a confused liar! Isn't that amazing?

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

} We can use super to access any method of the parent class.
Here, the confused liar with probably 0.5 will not remember who he or she is (or
is it just faking?), otherwise he or she will lie as before.

We just 6 lines of code, we created a relatively complex personality thanks to
inheritance and polymorphism: a confused liar! Isn't that amazing?

How can we do better?

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

else return super.sayHi(to);

}

}
The else word is not needed here.

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

if (Math.random() > 0.5) return 'Who am I?';

return super.sayHi(to);

}

}
Two return statements are not needed either.

Variable Declaration in JS

More Polymorphism and Inheritance

class ConfusedLiar extends Liar {

sayHi(to) {

return Math.random() > 0.5 ? 'Who am I?' : super.sayHi(to);

}

}
With the ternary operator we saved one extra line without losing readability.
5 lines! Amazing!

Variable Declaration in JS

Advanced Topic: Context

• The value of this is called context

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

Variable Declaration in JS

Advanced Topic: Context

• The value of this is called context

• In JavaScript, surprisingly, it is not fixed, but it changes dynamically depending
on where the function is executed

sayHi(to) {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}

Variable Declaration in JS

Advanced Topic: Context

• The setTimeout function lets you execute some code after a given amount of
time (here 2 seconds).

setTimeout(function() {

// Code to be added

}, 2000);

Variable Declaration in JS

Advanced Topic: Context

• If you use the setTimeout function inside our sayHi method the result might be
disappointing.

• The context, i.e., the value of this, inside the setTimeout function is the
setTimeout function itself.

• This is generally terribly confusing to JS beginners

setTimeout(function() {

// Code to be added

}, 2000);

Variable Declaration in JS

Advanced Topic: Context

sayHi(to) {

setTimeout(function() {

return 'Hello ' + to + '. I am ' + this.name +

', and I was born in ' + (this.year + this.degree);

}, 2000);

}

sayHi('Stefano');

// Hello Stefano. I am undefined, and I was born in undefined.

Variable Declaration in JS

Advanced Topic: Context

sayHi(to) {

let that = this;

setTimeout(function() {

return 'Hello ' + to + '. I am ' + that.name +

', and I was born in ' + (that.year + that.degree);

}, 2000);

}

• You can circumvent this problem, by storing the value of this inside another
variable.

• For historical reason, it is customary to call this variable that

Variable Declaration in JS

Advanced Topic: Context

sayHi(to) {

let that = this;

setTimeout(function() {

return 'Hello ' + to + '. I am ' + that.name +

', and I was born in ' + (that.year + that.degree);

}, 2000);

}

• You can circumvent this problem, by storing the value of this inside another
variable.

• For historical reason, it is customary to call this variable that

• Alternatively, you can use an arrow function as a parameter of the setTimeout
function

Variable Declaration in JS

Advanced Topic: Arrow Functions

• Introduced in ES6
• They look weird
• They can shorten function definitions

// Standard way.

function() {

return 'I am a normal function';

}

// Arrow functions.

() => {

return 'I am an arrow function';

}

It isn't much shorter though…

Variable Declaration in JS

Advanced Topic: Arrow Functions

• Introduced in ES6
• They look weird
• They can shorten function definitions

// Standard way.

function() {

return 'I am a normal function';

}

// Arrow functions.

() => {

return 'I am an arrow function';

}

It isn't much shorter though…There are conditions
in which parentheses can be omitted.

Variable Declaration in JS

Exercises

Part_2_OOP/4_this.js

Variable Declaration in JS

Objected Oriented Cooperation Tournament

Part_2_OOP/5_final_exercise.js

But first the theory!

