
App Dev

@balietti | stefanobalietti.com | @nodegameorg | nodegame.org

Stefano Balietti
Center for European Social Science Research at Mannheim University (MZES)
Alfred-Weber Institute of Economics at Heidelberg University

Building Digital Skills: 5-14 May 2021, University of Luzern

Prototype vs Property

Module 9: Web Server

Prototype vs Property

Module 9: Web Server

Learning Goals

• Setup the ExpressJS server in NodeJS

• Understanding middleware

• Creating custom routes and password protected routes

• Creating RESTful APIs

• Upload your server on the Heroku cloud

• Implement a simple Captcha

Prototype vs Property

Module 9: Web Server

• Express JS provides a minimalistic and fast web server API to server static assets and
templates

• Express JS is the most installed server in NodeJS ecosystem (a recent alternative fastify)

• Can be used in production in tandem with the NginX server (not covered here)

• Heroku is a cloud platform as a service supporting several programming languages.

• Heroku focuses on apps and provides the backend infrastructure to run them.

Prototype vs Property

Routes

• Programming in Express means adding "routes" sequentially

• Each routes catch a given path in the URL (wildcards are possible)

• Each route takes a callback that manipulates two objects:
• request from the browser (e.g., for checking IP or cookies)
• response (e.g., send a file back)

• The order in which are added matters! Earlier routes are executed first

Prototype vs Property

Routes Examples

// A route to intercept requests to home (root).
app.get('/', (req, res) => {
// Something here

});

Prototype vs Property

Routes Examples

// A route to intercept requests to home (root).
app.get('/', (req, res) => {
// Something here

});

The request object contains
information about the
request, such as:

- req.body (POST)
- req.params (GET)
- req.cookies
- req.ip

Prototype vs Property

Routes Examples

// A route to intercept requests to home (root).
app.get('/', (req, res) => {
// Something here

});

The request object contains
information about the
request, such as:

- req.body (POST)
- req.params (GET)
- req.cookies
- req.ip

The response object
contains methods to handle
the request, such as:

- res.cookie
- res.send
- res.sendFile
- res.status
- res.end

Prototype vs Property

Routes Examples

// A route to intercept requests to home (root).
app.get('/', (req, res) => {
// A quick message.
res.send('This is your home page.');

});

Prototype vs Property

Routes Examples

// A route to intercept requests to home (root).
app.get('/', (req, res) => {
// A quick message.
res.send('This is your home page.');

});

// Mail route.
app.get('/mail', (req, res) => {
res.sendFile('/path/to/mail/file.html');

});

Prototype vs Property

Middlewares

// A route to intercept requests to home (root).
app.use('ROUTE', (req, res, next) => {
// Do something (e.g., authenticate user).

// Everything OK, go to the next middleware/route callback.
next();

});

Prototype vs Property

Middlewares

// A route to intercept requests to home (root).
app.use('ROUTE', (req, res, next) => {
// Do something (e.g., authenticate user).

// Everything OK, go to the next middleware/route callback.
next();

});

For instance: '/mail/'
But it can also be skipped to be
applied globally.

First Exercise!

After Express has started, it serves files from this address:

http://localhost:3000

YOUR OWN COMPUTER
(INSTEAD OF A REMOTE SERVER)

It is equivalent to the
numeric IP: 127.0.0.1

A INTERNAL ADDRESS
WITHIN YOUR COMPUTER

(THINK IT AS THE DOOR BELL
IN A LARGE BUILDING)

PORT
ADDRESS

The localhost Address

Prototype vs Property

Cloud Providers

Netlify (PaaS): front-end development

Vercel (PaaS): in-between Netlify and Heroku

Heroku (PaaS): back-end development (apps sleep!)

Digital Ocean (BaaS and PaaS): you want to maintain
your own virtual server at a very reasonable price.

Firebase (BaaS): access to Google services

Azure (BaaS): access to Microsoft services

AWS (BaaS): access to Amazon services

https://medium.com/@benwang_2362/the-difference-between-iaas-paas-baas-and-saas-91133d728917

Image source

https://www.netlify.com/
https://vercel.com/
https://www.heroku.com/
https://www.digitalocean.com/
https://firebase.google.com/
https://azure.microsoft.com/en-us/
https://aws.amazon.com/
https://medium.com/@benwang_2362/the-difference-between-iaas-paas-baas-and-saas-91133d728917
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/

Prototype vs Property

Module 6: Resources

• https://expressjs.com/

• https://expressjs.com/en/4x/api.html

• https://scotch.io/tutorials/whats-new-in-expressjs-5-0

• https://www.geeksforgeeks.org/different-servers-in-node-js/

• https://javascript.plainenglish.io/fastify-express-benchmark-4c4aebb726d6

• https://www.heroku.com

https://expressjs.com/
https://expressjs.com/en/4x/api.html
https://scotch.io/tutorials/whats-new-in-expressjs-5-0
https://www.geeksforgeeks.org/different-servers-in-node-js/
https://javascript.plainenglish.io/fastify-express-benchmark-4c4aebb726d6
https://www.heroku.com/

Prototype vs Property

Security

Learning Goals

- Best practices to secure Express server

- How to store passwords: encryption vs hashing

- How to tame bots: how detect them, honeypots and captchas

Prototype vs Property

Securing Express

Express highlights in this page the best security practice

https://expressjs.com/en/advanced/best-practice-security.html

See exercise: 7_secure.js

https://expressjs.com/en/advanced/best-practice-security.html

Prototype vs Property

Securing Express

1. Never use deprecated or vulnerable versions of Express

Keep an eye on the security update page

https://expressjs.com/en/advanced/security-updates.html

Prototype vs Property

Securing Express

2. Always use TLS (Transport Layer Security), enabling https://

TLS encrypts all data before it is sent from the client to the server

Add a route to redirect all HTTP traffic to HTTPS

Remember! POST requests do not encrypt data, more secure than GET:

• are not cached/bookmarked/browser history

• much larger data length restriction (~8Kb vs ~2Gb, but can be configured)

https://kinsta.com/knowledgebase/tls-vs-ssl/
https://www.guru99.com/difference-get-post-http.html

Prototype vs Property

Securing Express

3. In doubt, put the Helmet on!

Helmet is a package to automatically configure Express with a higher level of security

Default security can be too tight, i.e., disabling all scripts without a hash or a nonce
attribute

At least remove the "Powered by Express" header.

Prototype vs Property

A Deeper Look at the Headers

Open the DevTools, click on Network tab and click on a resource (e.g., style_input.css)

WITH HELMET WITHOUT HELMET

Scroll down for more headers

Prototype vs Property

Securing Express

4. Prevent brute-force attacks with a rate-limiter package

The rate-limiter-flexible package for instance lets you define a number of points that
can be consumed within a given duration. You can associate actions to point
consumption (to a logged user or to a IP address) and when it goes to zero access to
resource is denied.

https://github.com/animir/node-rate-limiter-flexible

Prototype vs Property

Securing Express

5. Whitelist IPs that can access the API

- Setting up CORS

- Manually checking IP access

Prototype vs Property

Securing Express

5. Whitelist IPs that can access the API

- Setting up CORS:
- The cors package handles it nicely

- Can specify address, protocol, and port.

- The web server still receives and responds to requests normally.

- The browser will hide the responses if the CORS policy is not respected.

- Manually checking IP access:
- Completely prevent access to the resource

- IP can masked by a proxy (e.g., Nginx) check headers 'x-real-ip'

https://www.npmjs.com/package/cors

Prototype vs Property

Securing Express

6. Create a strong access key for the API

Use the crypto module or the uuid package

Never store the password in plain, neither in separate file nor hardcoded in code

Create an hash that can be stored outside of codebase (e.g., database or fs)

Load the hash in memory and compare incoming requests

The bcrypt module is recommended for hashing

Must use TSL to encrypt API key in incoming requests.

https://www.syedhussim.com/node.js/generating-web-api-keys.html
https://www.npmjs.com/package/uuid
https://www.npmjs.com/package/bcrypt

Prototype vs Property

Securely Authenticating Users

5. If you are dealing with authenticating users in the browser JSON Web Tokens are
recommended. Playground: https://jwt.io/

• Store them as cookies and use the HttpOnly tag.

• httpOnly tag makes the cookie unavailable to JavaScript, they are just sent with the
Headers on every request.

Or you may plugin one of these solutions:

• https://magic.link/

• https://auth0.com/

https://www.npmjs.com/package/jsonwebtoken
https://jwt.io/
https://magic.link/
https://auth0.com/

Prototype vs Property

Securely Authenticating Users

5. If you are dealing with authenticating users in the browser JSON Web Tokens are
recommended. Playground: https://jwt.io/

• Store them as cookies and use the HttpOnly tag.

• httpOnly tag makes the cookie unavailable to JavaScript, they are just sent with the
Headers on every request.

Or you may us a plugin auth:

• https://auth0.com/ (Max 7000 active users for free)

• https://magic.link/ (Max 100 active users for free)

https://www.npmjs.com/package/jsonwebtoken
https://jwt.io/
https://auth0.com/
https://magic.link/

Prototype vs Property

Useful Packages

• The passport package makes it easier to integrate different authorization methods
(including oauth)

• The pm2 package spawns a NodeJS child process in the background (MUST).
If you run the Express server yourself you need to make sure the server is kept-alive after you close the
connection/terminal.
Pm2 will restart the server upon errors, handle memory limits, and help you configure the node.js
process

• The nodemon package will watch your files and restart your server whenever there is a
change. Very very useful when developing a server application.

• The dotenv package is a simple package to load data (e.g., passwords and keys) into the
NodeJS process

https://www.npmjs.com/package/passport
https://www.npmjs.com/package/pm2
https://www.npmjs.com/package/nodemon
https://www.npmjs.com/package/dotenv

Prototype vs Property

Securing Express: Resources

• https://expressjs.com/en/advanced/best-practice-security.html

• https://dev.to/omergulen/step-by-step-node-express-ssl-certificate-run-https-server-from-
scratch-in-5-steps-5b87

• https://blog.gitguardian.com/secrets-api-management/

https://expressjs.com/en/advanced/best-practice-security.html
https://dev.to/omergulen/step-by-step-node-express-ssl-certificate-run-https-server-from-scratch-in-5-steps-5b87
https://blog.gitguardian.com/secrets-api-management/

Password management

• In 2013 Adobe announced a huge data breach that affected 3.000.000 to 38.000.000
customers.

• A huge dump of the offending customer database was recently published online.

• In the statement Adobe announce that:
“The attackers may have gained access to your… encrypted password.”

• But what is encrypted password mean ?

Adobe Data Breach

Adobe Hacked, Source:
https://www.venzagroup.com/adobe-systems-data-
breach-compromises-information-millions-users/

https://www.venzagroup.com/adobe-systems-data-breach-compromises-information-millions-users/
https://www.venzagroup.com/adobe-systems-data-breach-compromises-information-millions-users/

h
tt

p
s:

//
in

fo
rm

at
io

n
is

b
ea

u
ti

fu
l.n

et
/v

is
u

al
iz

at
io

n
s/

w
o

rl
d

s-
b

ig
ge

st
-d

at
a-

b
re

ac
h

es
-h

ac
ks

/

https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

• For password storage do not use encryption

• Use a one-way mathematical function called a hash that uniquely depends on the password

• You can calculate the hash from the password, but not the other way around

Encrypted Password ?

https://passwordsgenerator.net/sha256-hash-generator/

https://passwordsgenerator.net/sha256-hash-generator/

• You never actually store the password at all, password processed in memory to verify hash

• To make it more secure you usually add some salt: a random string that you store with the
user’s ID and mix into the password when you compute the hash.

• Finally you also use a key derivation function (KDF) like bcrypt.

Encrypted Password ?

Encrypted Password ?

Encryption vs Hashing, Source:
https://www.okta.com/identity-101/hashing-vs-
encryption/

https://www.okta.com/identity-101/hashing-vs-encryption/
https://www.okta.com/identity-101/hashing-vs-encryption/

• A hash function maps data of arbitrary size to fixed-size values

• Hashed passwords are deterministic: same input -> same output

• This makes hashed passwords vulnerable to a dictionary attack

• A cryptographic salt can mitigate this risk

• Salt are random bits added to each password instance before its hashing

• Salts create unique passwords even in the instance of two users choosing the same passwords

Hashing and Salting

Hashing and Salting

Password Hash Salting, Source:
https://cyberhoot.com/cybrary/password-salting/

https://cyberhoot.com/cybrary/password-salting/
https://cyberhoot.com/cybrary/password-salting/

• bcrypt is a key derivation function that based on Blowfish cipher and crypt hash function.

• The safety of the password depends on how fast the selected cryptographic hashing function
can calculate the password hash.

• A fast function would execute faster when running in much more powerful hardware.

bcrypt

Password Hashing Functions, Source:
https://synkre.com/how-secure-is-bcrypt/

https://synkre.com/how-secure-is-bcrypt/
https://synkre.com/how-secure-is-bcrypt/

• bcrypts goal is to create a cryptographic hash function that can be tuned to run slower in newly
available hardware; that is, the function scales with computing power to mitigate this attack vector
that mentioned above.

• bcrypt use Blowfish to add extra computational demand to hash functions to protect against
dictionary and brute force attacks by slowing down the attack.

bcrypt

bcrypt, Source:
https://commons.wikimedia.org/wiki
/File:Bcrypt.png

https://commons.wikimedia.org/wiki/File:Bcrypt.png
https://commons.wikimedia.org/wiki/File:Bcrypt.png

• Adobe passwords were encrypted, not hashed.

• In this case it means anyone who computes, guesses or acquires Adobes decryption key
immediately gets access to all the passwords in the database.

• In the end, with very little effort, someone can recover an awful lot of information about
the breached passwords, including: identifying the top five passwords precisely, plus the
2.75% of users who chose them; and determining the exact password length of nearly
one third of the database.

• Basically using salted hashes on the other hand wouldn’t have yielded up any such
information.

Back to Adobe Case

• From the dumped data we can get the encrypted passwords and password hints.

• With all data lengths a multiple of eight, we’re almost certainly looking at a block cipher
that works eight bytes (64 bits) at a time.

• That, in turn, suggests that we’re looking at DES, or its more resilient modern derivative,
Triple DES, usually abbreviated to 3DES.

Breaking the Adobe's Encryption

Data Dump, Source:
https://nakedsecurity.sophos.com/2
013/11/04/anatomy-of-a-password-
disaster-adobes-giant-sized-
cryptographic-blunder/

https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
http://www.apple.com/tr/

• Finally the last step is to create a crib sheet to recover passwords. This can be done by
assuming that the most common passwords in the past leaks will remain as most common.

Breaking the Adobe's Encryption

• Without any considerable work,
we already have a lot of clues to
recover the passwords.

• For example, assuming
e2a311ba09ab4707 is 8 zero-
bytes, we can say that 27% of all
passwords are eight characters
long.

Crib Sheet, Source:
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-
password-disaster-adobes-giant-sized-cryptographic-blunder/

https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/

Taming Bots

Bots

• Bots are computer programs trained to behave like humans.

• Help us to automated lot of tasks, save time and money.

• As bots become even more human-like every year, it has made it more difficult to
accurately detect bots crawling your website.

• Bot traffic even makes up over 40% of website visits

• Effects of bad bots:
• Scrape your content, scrape links or worse still - your data
• Attempt to disrupt your site performance
• Post spam content and spurious form generation

Bots

Bad Bot v Good Bot v Human Traffic 2020, Source:
https://www.imperva.com/blog/bad-bot-report-2021-
the-pandemic-of-the-internet/

https://www.imperva.com/blog/bad-bot-report-2021-the-pandemic-of-the-internet/
https://www.imperva.com/blog/bad-bot-report-2021-the-pandemic-of-the-internet/

Bots

https://botometer.osome.iu.edu/
Img source

• Bots are 5-20% of all Twitter users

https://botometer.osome.iu.edu/
https://greekreporter.com/2022/05/17/elon-musk-twitter-deal-bots-fake-accounts/

Bot Detection

Some Indicators of Existence of Bots:

• Direct traffic sources
• Reducing server performance or website speed
• Faster browsing rate
• Inconsistent page views
• Increasing bounce rate
• Junk user information
• Content scraping and stealing
• Spike in traffic from an unexpected location
• Passive/active fingerprinting

Bot, Source:
https://pl.wikipedia.org/wiki/Bot_(program)

https://pl.wikipedia.org/wiki/Bot_(program)
https://pl.wikipedia.org/wiki/Bot_(program)

Bot Detection

• Direct traffic sources:
When there’s a “bot attack” on your site, or to a particular page, the only channel
contributing to the traffic will be “direct” traffic.

• Reducing server performance or website speed:
A slowdown in your hosting server performance or speed mainly comes from bots.

• Faster browsing rate:
Machines can browse a website much faster than humans. So when you experience a huge
amount of traffic in a short period, it’s mostly because of bots.

Bot Detection

• Inconsistent page views:
When bots enter a website, they tend to load up a large number of pages all at once.
Therefore bots can lead to an unusual increase in page views.

• Increasing bounce rate:
If the average page duration for a website (time spent on-page) reduces, and the bounce
rate increases (visitors not viewing other pages or interacting with the page), this is a clear
indicator that your website is being visited by rogue bots.

• Junk user information:
weird, unusual account creation or sign-ups with weird email addresses, accompanied by
potential fake names and phone numbers is a huge indicator of bots on your website.

Bot Detection

• Spike in traffic from an unexpected location:
A sudden increase in users from a particular region, country, city or other location, which
you may not be familiar with, or not related to your website can indicate existence of bots.

• Passive/active fingerprinting:
Web browsers are generally complex and packed full of information (headers, userAgent, IP,
extensions, etc.) Your system will send a request to every browser, querying this
information on the browser as an identifier. Utilizing a solution like device fingerprinting
can access deep information about a user to easily identify bots.

Honeypots

• A honeypot is a decoy created to look like a compromised system that will seem like an
easy target for malefactors.

• Honeypots distract hackers and thus protect the real possible targets.

• Honeypots are information tools that can help you understand existing threats to your
website and spot the emergence of new threats.

What Is A Honeypot?, Source:
https://infatica.io/blog/honeypots-overview/

https://infatica.io/blog/honeypots-overview/
https://infatica.io/blog/honeypots-overview/

How Honeypots Work ?

• Honeypots fake legitimate targets such as a company's customer billing system.

• Their deliberate security vulnerabilities lure the hackers.

• Once the hackers get in the honeypot, they can be tracked, and their behavior assessed
for clues on how to make the real network more secure.

• By tracking the hackers you can learn:
• where the cybercriminals are coming from
• the level of threat
• what modus operandi they are using
• what data or applications they are interested in
• how well your security measures are working to stop cyberattacks

How Honeypots Work ?

Honeypot, Source:
https://www.thesecuritybuddy.
com/data-breaches-
prevention/what-is-honeypot/

https://www.thesecuritybuddy.com/data-breaches-prevention/what-is-honeypot/
https://www.thesecuritybuddy.com/data-breaches-prevention/what-is-honeypot/

Honeypots can also be added to Forms

Honeypots can also be added to Forms

Honeypots can also be added to Forms

An unsophisticated bot will fill-in
the form even if it is not displayed.

Usage of Honeypots

• Spam Detection

• Protection From SQL Injections

• Protection From Malware

• Searching For Malicious Servers

• Anti-Crawler

Spam Detection, Source:
https://infatica.io/blog/honeypots-overview/

https://infatica.io/blog/honeypots-overview/
https://infatica.io/blog/honeypots-overview/

Benefits and Dangers

• There are several benefits of honeypots:
• They make it much easier to spot patterns, (e.g., similar IP addresses)
• They are resource light
• Have a low false positive rate
• They can give you reliable intelligence
• Great training tools for technical security staff

• However:
• Honeypots cannot catch everything
• When identified, hackers can feed bad information to the honeypot
• They can be used as a way to your real system
• Honeypots in forms may have faulty renderings in non-standard browsers and

browsers for visually impaired people

Captchas

"Completely Automated Public Turing test to
tell Computers and Humans Apart” or a
CAPTCHA is a type of challenge-response test
used in computing to determine whether the
user is human.

CAPTCHAs protect websites against bots by
generating and grading tests that humans can
pass but current computer programs cannot.

Traffic Lights Captcha,
Source:
https://onezero.medium.co
m/why-captcha-pictures-
are-so-unbearably-
depressing-20679b8cf84a

https://onezero.medium.com/why-captcha-pictures-are-so-unbearably-depressing-20679b8cf84a
https://onezero.medium.com/why-captcha-pictures-are-so-unbearably-depressing-20679b8cf84a

Types of Captchas

• Text-based CAPTCHAs
• CAPTCHA Image
• Audio CAPTCHA
• Math or Word Problems
• Social Media Sign In
• No CAPTCHA ReCAPTCHA

No CAPTCHA, Source:
https://de.wordpress.org/plugins/login-recaptcha/

reCAPTCHA, Source: http://www.captcha.net/

https://de.wordpress.org/plugins/login-recaptcha/
https://de.wordpress.org/plugins/login-recaptcha/
http://www.captcha.net/
http://www.captcha.net/

Drawbacks of Captchas

Captchas helps to prevent bots and spams but :

• Can be disruptive and frustrating for users

• May be difficult to understand or use for some audiences

• Some CAPTCHA types do not support all browsers

• Some CAPTCHA types are not accessible to users who view a website using screen
readers or assistive devices

hCaptcha

Compared to traditional reCAPTCHA:

• hCaptcha gives you more control over the difficulty level you need for your site and does a
better job of protecting your users' privacy.

• hCaptcha has 100% of the features of reCAPTCHA.

• hCaptcha makes compliance with privacy rules like GDPR, LGPD, CCPA more straightforward.

• hCaptcha also pays publishers (free accounts) for the work your users are doing. Using
reCAPTCHA donates that work to Google.

How it works ?

• The user answers an hCaptcha.

• They get a passcode from our server that is embedded in your form.

• When the user clicks Submit the passcode is sent to your server in the form.
• Your server then checks that passcode with the hCaptcha server API.

• hCaptcha says it is valid and credits your account. Your server now knows the user
is not a bot and lets them log in.

Prototype vs Property

Module 10: MongoDB

• Databases are organized collections of related data records

• There are different ways of storing and organizing data in a database

What is a Database?

https://phoenixnap.com/kb/database-types

https://phoenixnap.com/kb/database-types

RELATIONAL (SQL)

Relational vs NoSQL

Img source

• Data is structured in tables
• Tables are linked via foreign keys (IDs)
• Keys allows for fast indexing and search
• Reliable and stable projects (e.g., MySQL)
• Formal language to query database

Img source

https://phoenixnap.com/kb/database-types
https://appdividend.com/2019/04/22/sql-select-query-example-sql-select-statement-tutorial/

NoSQL

Relational vs NoSQL

• Data is organized in various ways
• They serve specific purpose of processing the data
• Document databases are the most common (MongoDB)
• Very flexible
• Scale very well with data

Img source https://www.mongodb.com/docs/drivers/node/v4.6/usage-examples/findOne/

https://phoenixnap.com/kb/database-types
https://www.mongodb.com/docs/drivers/node/v4.6/usage-examples/findOne/

Rankings

https://db-engines.com/en/ranking

https://db-engines.com/en/ranking

• Free, open source

• Can be installed locally or used on in the cloud (Atlas)

• Great documentation and a large community

• Why using MongoDB? https://www.mongodb.com/why-use-mongodb

• 4 Reasons to use MongoDB: https://www.mongodb.com/developer/article/top-4-
reasons-to-use-mongodb/

MongoDB Documentation

https://www.mongodb.com/why-use-mongodb
https://www.mongodb.com/developer/article/top-4-reasons-to-use-mongodb/

• You can access MongoDB via a MongoDB shell, e.g., mongosh

• In mongosh, you type command as in a terminal

• Documentation for shell access is here:
https://www.mongodb.com/docs/manual/

• In your app, you need to use MongoDB driver, e.g., the driver for Node.JS

• The commands are slightly different from the shell, the most important difference is you
need to account for asynchronous interaction

• Documentation for Node.JS is here:
https://www.mongodb.com/docs/drivers/node/current/quick-start/

MongoDB Documentation

https://www.mongodb.com/docs/manual/
https://www.mongodb.com/docs/drivers/node/current/quick-start/

• You can access MongoDB via a MongoDB shell, e.g., mongosh

• In mongosh, you type command as in a terminal

• Documentation for shell access is here:
https://www.mongodb.com/docs/manual/

• In your app, you need to use MongoDB driver, e.g., the driver for Node.JS

• The commands are slightly different from the shell, the most important difference is you
need to account for asynchronous interaction

• Documentation for Node.JS is here:
https://www.mongodb.com/docs/drivers/node/current/quick-start/

MongoDB Documentation

https://www.mongodb.com/docs/manual/
https://www.mongodb.com/docs/drivers/node/current/quick-start/

