
App Dev

@balietti | stefanobalietti.com | @nodegameorg | nodegame.org

Stefano Balietti
Center for European Social Science Research at Mannheim University (MZES)
Alfred-Weber Institute of Economics at Heidelberg University

Building Digital Skills: 5-14 May 2021, University of Luzern

What Is This Course About?

• Leverage knowledge acquired in course "Intro to Programming for App
Development"

• The course expects some knowledge of computer programming and a basic
understanding of front-end web development …

• but we will recap the core concepts.

• The goal is to gain a fine understanding of the full web stack to create web-based
apps that can run on multiple devices

• The learning speed and materials will be adapted to the level of the participants

1. At the beginning, it was almost synonymous with "creating
web sites"

2. However, it's meaning has evolved and it includes a broader
definition of creating "web services" or "web apps"

What is Web Development?

http://info.cern.ch/hypertext/WWW/TheProject.html

From the first web site
ever to…

http://info.cern.ch/hypertext/WWW/TheProject.html

http://info.cern.ch/hypertext/WWW/TheProject.html

From the first web site
ever to…

Complex E-commerce

https://www.amazon.com/

http://info.cern.ch/hypertext/WWW/TheProject.html
https://www.amazon.com/

http://info.cern.ch/hypertext/WWW/TheProject.html

From the first web site
ever to…

Complex E-commerce Beautiful Interfaces

https://www.amazon.com/ http://2015.dconstruct.org/

http://info.cern.ch/hypertext/WWW/TheProject.html
https://www.amazon.com/
http://2015.dconstruct.org/

http://info.cern.ch/hypertext/WWW/TheProject.html

From the first web site
ever to…

Complex E-commerce Beautiful Interfaces

Complex interactions

https://www.amazon.com/

https://eth.build/

http://2015.dconstruct.org/

http://info.cern.ch/hypertext/WWW/TheProject.html
https://www.amazon.com/
https://eth.build/
http://2015.dconstruct.org/

http://info.cern.ch/hypertext/WWW/TheProject.html

From the first web site
ever to…

Complex E-commerce Beautiful Interfaces

Complex interactions

https://www.amazon.com/

https://eth.build/

http://2015.dconstruct.org/

Plain nonsense

http://eelslap.com/

https://makeawebsitehub.com/weird-websites/
https://ecommercebooth.com/weird-websites/

http://info.cern.ch/hypertext/WWW/TheProject.html
https://www.amazon.com/
https://eth.build/
http://2015.dconstruct.org/
http://eelslap.com/
https://makeawebsitehub.com/weird-websites/
https://ecommercebooth.com/weird-websites/

https://www.internetlivestats.com/

Live Internet Stats

https://www.internetlivestats.com/

576,000 New Websites Per Day
4,800 zettabytes (ZB) predicted in year 2022

zettabyte as “1021 or 1,000,000,000,000,000,000,000 bytes.”

https://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that

576,000 New Websites Per Day
4,800 zettabytes (ZB) predicted in year 2022

zettabyte as “1021 or 1,000,000,000,000,000,000,000 bytes.”

https://websitesetup.org/news/how-many-websites-are-there/

https://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that
https://websitesetup.org/news/how-many-websites-are-there/

1. Front-end: focus on presentation, usually have good
design skills, interact with web services as black boxes

2. Back-end: application logic, database, admin, suck at
design user interfaces

3. Full-stack: usually suck at both, but they have a
understanding of things glue together

4. Face an increasing number of frameworks and tools

5. Pressured between the need to deliver current
projects and learning new technology

What is a Web Developer?

Image source

https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/

1. Front-end: focus on presentation, usually have good
design skills, interact with web services as black boxes

2. Back-end: application logic, database, admin, suck at
designing user interfaces

3. Full-stack: usually suck at both, but they have a
understanding of things glue together

4. Face an increasing number of frameworks and tools

5. Pressured between the need to deliver current
projects and learning new technology

What is a Web Developer?

Image source

https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/

1. Front-end: focus on presentation, usually have good
design skills, interact with web services as black boxes

2. Back-end: application logic, database, admin, suck at
designing user interfaces

3. Full-stack: usually suck at both ☺, but they have a
solid understanding of how things glue together

4. Face an increasing number of frameworks and tools

5. Pressured between the need to deliver current
projects and learning new technology

What is a Web Developer?

Image source

https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/

1. Front-end: focus on presentation, usually have good
design skills, interact with web services as black boxes

2. Back-end: application logic, database, admin, suck at
designing user interfaces

3. Full-stack: usually suck at both ☺, but they have a
solid understanding of how things glue together

4. Face an increasing number of frameworks and tools

5. Pressured between the need to deliver current
projects and learning new technology

What is a Web Developer?

Image source

https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/

The Web Development Jungle (2015…)

https://pressupinc.com/blog/2015/11/web-development-industry-jungle/

The Web Development Jungle (2015…)

• Understand the technology stack
• Review main frameworks (not exhaustive)
• Hands-on exercises
• Choosing the right approach for your project

https://pressupinc.com/blog/2015/11/web-development-industry-jungle/

Prototype vs Property

Full-Stack Technologies

https://www.cybercoders.com/insights/what-hiring-managers-look-
for-in-a-full-stack-developer/

https://www.masterborn.com/blog/Frontend_vs_backend_guide

https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://www.masterborn.com/blog/Frontend_vs_backend_guide

Prototype vs Property

Full-Stack Technologies

https://www.cybercoders.com/insights/what-hiring-managers-look-
for-in-a-full-stack-developer/

Covered in intro course
(we will have a recap)

Will get a general overview (no demos)
We could have a demo for nodeGame

We will cover Bootstrap
and jQuery

https://www.masterborn.com/blog/Frontend_vs_backend_guide

https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://www.masterborn.com/blog/Frontend_vs_backend_guide

Prototype vs Property

Full-Stack Technologies

https://www.cybercoders.com/insights/what-hiring-managers-look-
for-in-a-full-stack-developer/

We will work with Node.JS

https://www.masterborn.com/blog/Frontend_vs_backend_guide

https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://www.masterborn.com/blog/Frontend_vs_backend_guide

Prototype vs Property

Full-Stack Technologies

https://www.cybercoders.com/insights/what-hiring-managers-look-
for-in-a-full-stack-developer/

We will have a quick intro
to MongoDB

https://www.masterborn.com/blog/Frontend_vs_backend_guide

https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://www.masterborn.com/blog/Frontend_vs_backend_guide

Prototype vs Property

Full-Stack Technologies

https://www.cybercoders.com/insights/what-hiring-managers-look-
for-in-a-full-stack-developer/

What is DevOps?

It's a term indicating the work of
someone at the interface of
developing and business operations

We will review a few hosting
solutions, e.g. Heroku and Digital
Ocean

https://www.masterborn.com/blog/Frontend_vs_backend_guide

https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://www.masterborn.com/blog/Frontend_vs_backend_guide

Prototype vs Property

Full-Stack Technologies

https://www.cybercoders.com/insights/what-hiring-managers-look-
for-in-a-full-stack-developer/

We will review Ionic and PWA plus
Chrome extensions

https://www.masterborn.com/blog/Frontend_vs_backend_guide

https://www.cybercoders.com/insights/what-hiring-managers-look-for-in-a-full-stack-developer/
https://www.masterborn.com/blog/Frontend_vs_backend_guide

Tentative Schedule

Date Module Goals

Nov
11

Recap, Async code,
Frontend Frameworks

Environment check, recap of intro course (JS, Browser, CSS),
NPM and Node, Asynchronous Code (callbacks, promises,
async/await, listeners, fetch, axios, REST APIs), jQuery

Nov
12

More Frontend
frameworks, Intro to
Express, and Nginx

Bootstrap v5, Flex, and Grid, Express, Nginx Running a local
HTTP server

Nov
18

Securing Express,
Taming Bots, Hosting,
Let's Encrypt,
MongoDB, nodeGame

Debugging Backend code, Running MongoDB in the cloud
and locally, Choosing an host, Encryption, nodeGame,
Honeypots, Captchas

Nov
19

Chrome Extensions,
PWA, Mobile
Development

Mobile First, Overview of Single-page frameworks, Chrome
Extensions, PWA, Ionic, Debugging Mobile

BEGINNER

ADVANCED

NINJA

CHUCK
NORRIS

What is a realistic
learning goal?

How to get the most out of this course?

• This is a workshop rather than a course

• Frontal teaching is the smaller part of learning, you will get the most by doing the
exercises

• You should do the exercises at your own pace. Don't feel compelled to them all

• Set a plausible learning target for yourself and try hard to achieve it!

Learning Curve

https://en.wikipedia.org/wiki/Hype_cycleAdapted from:

CONFIDENCE
IN JAVASCRIPT
PROGRAMMING

https://en.wikipedia.org/wiki/Hype_cycle

Learning Curve

https://en.wikipedia.org/wiki/Hype_cycleAdapted from:

CONFIDENCE
IN JAVASCRIPT
PROGRAMMING

Dr. Jimmy Cliff is a

Jamaican ska & reggae

musician, singer and actor.

You can get it if you really want

You can get it if you really want

But you must try,

try and try, try and try

You'll succeed at last

https://en.wikipedia.org/wiki/Hype_cycle

If You Get Stuck in The Exercises

• Within each sheet, exercises are generally in order of complexity; some exercises
are marked as "Bonus" or "Advanced." Feel free to skip all exercises that don't fit
your learning goal.

• Ask for help in the Discord channel (during or after the lecture time)

• Anybody can answer (or attempt to answer) questions

• Share screen if necessary (Discord allows to share apps and screens)

• Try to keep your GitHub repository up to date when asking for more specific help

Learning Curve

https://en.wikipedia.org/wiki/Hype_cycleAdapted from:

CONFIDENCE
IN JAVASCRIPT
PROGRAMMING

https://en.wikipedia.org/wiki/Hype_cycle

Now Introductions

Currently

• Fellow in Sociology Mannheim Center for European Social Research (MZES)

• Postdoc at the Alfred Weber Institute of Economics at Heidelberg University

Previously

o Microsoft Research - Computational Social Science New York City

o Postdoc Network Science Institute, Northeastern University

o Fellow IQSS, Harvard University

o PhD, Postdoc, Computational Social Science, ETH Zurich

http://stefanobalietti.com

Your Instructor: Stefano Balietti

http://stefanobalietti.com/

Experimental
Methods

Agent-
Based

Models

Social Network
Analysis

Interface of computer science, sociology, and economics

My Methodology

Machine Learning:
Optimal Design,

Text Analysis

Building Platforms

Garch-in-Gretl (GiG) for
econometrics Gretl
software

Patterns Configuration Module
for Drupal Web Content
Management System

www.nodegame.org

v7

Fast, scalable JavaScript for large-scale

real-time online experiments

2,622 active users, 30,448 downloads
~5000 weekly downloads

My Vision

Simulating Societal Processes in Virtual Labs

⚫ Consensus, social influence, and polarization

⚫ Group fairness, inequality, redistribution

⚫ Incentives schemes for collective intelligence

⚫ Optimal experimental design

About You (from web survey)

About You (from web survey)

About You (from web survey)

About You (from web survey)

About You (from web survey)

About You (from web survey)

About You (from web survey)

You Get the Certificate If

Attend all days.

No problems if you miss a few hours.

Prototype vs Property

Recap!

1. Basic JavaScript / Node.JS programming

2. Basic front-end development: HTML, JavaScript, CSS,
debugging front-end code.

3. Basic understanding of Git/GitHub

Prerequisites:

Prototype vs Property

Where we left

Prototype vs Property

OMG I missed the first part or I
don't remember a thing…How Do I

catch up?

• Intro course is still available on Discord

• https://www.freecodecamp.org/learn/javascript-
algorithms-and-data-structures/

• https://javascript.info/

• https://www.w3schools.com/

DON'T

https://www.freecodecamp.org/learn/javascript-algorithms-and-data-structures/
https://javascript.info/
https://www.w3schools.com/

Prototype vs Property

Recap: What Is JavaScript?

JavaScript is NOT Java

"Java is to JavaScript as ham is to hamster." (Jeremy Keith)

Image source

https://www.nordbord.de/info2go/detailseite/info2go/java-und-javascript

JavaScript is NOT Java

"Java is to JavaScript as car is to carpet." (Chris Heilmann)

Image source

53.12 incl. VAT

Image source

€61.39 incl. VAT

https://www.redbubble.com/i/backpack/Java-is-to-JavaScript-what-car-is-to-Carpet-by-Mechashadow/69786766.K1KHE
https://www.redbubble.com/i/shower-curtain/Java-is-to-JavaScript-what-car-is-to-Carpet-by-Mechashadow/69786766.YH6LW

JavaScript History

⚫ JavaScript was developed in May 1995 by
Brendan Eich for Netscape Communications Corp

⚫ Was created in 10 days in order to
accommodate the Navigator 2.0 Beta release

⚫ Initially called Mocha, later renamed LiveScript in
September, and later JavaScript in the same month

JavaScript

JavaScript History

⚫ Microsoft introduced JScript as reverse-engineered implementation of
Netscape's JavaScript in 1996 in Internet Explorer 3

⚫ In 1996 Netscape submitted JavaScript to European Computer
Manufacturers Association (ECMA) to create and industry standard

⚫ In 1997 ECMAScript was released

⚫ Between 1997 and 2009 5 standard have been released.

⚫ July 2015 ECMASCRIPT V6 released.

JavaScript

JavaScript History

• ES2016 a.k.a. ES7

• ES2017 a.k.a. ES8

• ES2018 a.k.a. ES9

• ES2019 a.k.a. ES10

• ES2020 a.k.a. ES11

• ES2021 a.k.a. ES12

• ES2022 a.k.a. ES13

JavaScript Releases

Image source

https://github.com/tc39/proposals

Language improvement proposals discussed here:

https://medium.com/better-programming/javascript-es2016-features-with-examples-a41b7aead589
https://medium.com/better-programming/javascript-es2017-features-with-examples-877f8406e770
https://medium.com/better-programming/javascript-es2018-features-with-examples-30fda8ac50fa
https://medium.com/better-programming/twelve-es10-features-in-twelve-simple-examples-6e8cc109f3d3
https://medium.com/better-programming/javascript-es2020-features-with-simple-examples-d301dbef2c37
https://www.pullrequest.com/blog/javascript-es2021-you-need-to-see-these-es12-features/
https://www.pullrequest.com/blog/javascript-es2021-you-need-to-see-these-es12-features/https:/www.pullrequest.com/blog/javascript-es2021-you-need-to-see-these-es12-features/https:/www.pullrequest.com/blog/javascript-es2021-you-need-to-see-these-es12-features/
https://github.com/tc39/proposals

JavaScript is #1 Language on Github

Github.com
2021

https://octoverse.github.com/

https://octoverse.github.com/

Github.com 2020

https://octoverse.github.com/

https://octoverse.github.com/

GitHub.com 2019

https://octoverse.github.com/

https://octoverse.github.com/

Variable Declaration in JS

Quick Setup Checkpoint

You have installed

• NodeJS
• Git
• Visual Studio Code (Code-Runner and Bracket matcher extensions)

Variable Declaration in JS

Quick Setup Checkpoint

You have installed

• NodeJS
• Git
• Visual Studio Code (Code-Runner and Bracket matcher extensions)

Fork the repository of exercises onto your GitHub account

https://github.com/shakty/app-dev-day-1

Clone the forked repository onto your machine

https://github.com/shakty/app-dev-day-1

Variable Declaration in JS

Forking Instructions

https://github.com/shakty/app-dev

https://www.youtube.com/watch?v=MDU2p9YtvlA

For Atom, I made this video:

https://www.youtube.com/watch?v=MDU2p9YtvlA

Variable Declaration in JS

Forking Instructions

Do not mix up with spooning :)

https://github.com/shakty/app-dev

https://www.youtube.com/watch?v=MDU2p9YtvlA

For Atom, I made this video:

https://www.youtube.com/watch?v=8wUOUmeulNs
https://www.youtube.com/watch?v=MDU2p9YtvlA

Prototype vs Property

Recap: HTML, JS, CSS

First Exercise!

The Browser: Behind the Scenes

Every web page that we visit is rendered by the browser using
a combination of the following three technologies:

First Exercise!

The Browser: Behind the Scenes

Every web page that we visit is rendered by the browser using
a combination of the following three technologies:

Structure and Content

First Exercise!

The Browser: Behind the Scenes

Every web page that we visit is rendered by the browser using
a combination of the following three technologies:

Styling and simple interactions

Center image

Gray
background

First Exercise!

The Browser: Behind the Scenes

Every web page that we visit is rendered by the browser using
a combination of the following three technologies:

Complex interactions,
communication with remote servers,
logging, tracking, etc.

Center image

Gray
background

First Exercise!

Some of the HTML Page's Inhabitants

<HTML>
<HEAD>

<LINK>
<SCRIPT>

</HEAD>
<BODY>
…
</BODY>

</HTML>

DOM Tree Presentation Tags

<DIV id=“header”>

<INPUT disabled>

Images and Links

<A>

Forms

<INPUT>
<TEXTAREA>

Attributes

<P>
<DIV>

CSS Declarations

.bold { font-weight: bold };
#header { width: 600px };

Variable Declaration in JS

HTML, CSS, JavaScript

Variable Declaration in JS

HTML, CSS, JavaScript

Right-Click near the search
bar and choose Inspect
Element to open the console.
(Shorcut: ctrl+shift+I)
How to open it in all browsers

https://webmasters.stackexchange.com/questions/8525/how-do-i-open-the-javascript-console-in-different-browsers

Variable Declaration in JS

Developer Tools: Elements

Variable Declaration in JS

Developer Tools: Elements

The actual names might be slightly different depending on
the browser version and language. For instance, "Elements"
is sometimes called "Inspector."

Variable Declaration in JS

HTML, CSS, JavaScript

Right-Click near the search
bar and choose Inspect
Element to open the console.
(Shorcut: ctrl+shift+I)
How to open it in all browsers

https://webmasters.stackexchange.com/questions/8525/how-do-i-open-the-javascript-console-in-different-browsers

Variable Declaration in JS

HTML, CSS, JavaScript
<HTML>

<HEAD>
<LINK>
<SCRIPT>

</HEAD>
<BODY>
…
</BODY>

</HTML>

DOM Tree

What is inside the
<BODY> tags is
rendered into the
page.

Variable Declaration in JS

HTML, CSS, JavaScript
<P>
<DIV>

Container Tags

https://stackoverflow.com/questions/30879707/why-is-a-div-called-a-div-why-is-a-span-called-a-span

Container tags can hold: text, images, links,
forms, etc. and also other container tags!

https://stackoverflow.com/questions/30879707/why-is-a-div-called-a-div-why-is-a-span-called-a-span

Variable Declaration in JS

HTML, CSS, JavaScript
<STYLE>
<LINK>

Style Tags

Variable Declaration in JS

HTML, CSS, JavaScript

Style rules can be added at
different levels and even on
the element itself.
JavaScript can change those
rules programmatically.

Variable Declaration in JS

HTML, CSS, JavaScript CSS (Cascading Style Sheets)

The term "cascading" means that you can add
multiple style sheets, and the order matters:
each style sheets extends (or overwrites) style
rules defined by previous style sheets.

Variable Declaration in JS

HTML, CSS, JavaScript CSS (Cascading Style Sheets)

What is displayed above is the final cascade of all
the CSS rules for the element with classes "jhp"
and "big", and with id "searchform".

Variable Declaration in JS

HTML, CSS, JavaScript

Script Tags
<SCRIPT>

Here is where JavaScript
code is added to the page.

Variable Declaration in JS

Developer Tools: Console

Switch to the console tab. We can try JS commands in here.

Variable Declaration in JS

Developer Tools: Console

Clear any pre-existing output: click on the button or type: clear()

Then, write something of your own with console.log()

console.log('Hello World');

First Exercise!

Test in Mobile View

First Exercise!

What Can JS in the Browser do?

Every JS object in the browser is child of the
window object, including:

1. DOM (Document Object Model) objects (i.e., all
things displayed on the page) exposed through the
document object

2. Extra info and methods about the browser itself

3. JavaScript language itself
Img source: JavaScript.info

https://javascript.info/browser-environment

Prototype vs Property

JS,HTML,CSS: References

• https://www.stefanobalietti.com/teaching/programming-fundamentals/

• https://www.freecodecamp.org/learn/javascript-algorithms-and-data-structures/

• https://javascript.info/

• https://developer.mozilla.org/en-US/docs/Web

• https://css-tricks.com/

• https://www.w3schools.com/html/

• https://www.w3schools.com/css/

https://www.stefanobalietti.com/teaching/programming-fundamentals/
https://www.freecodecamp.org/learn/javascript-algorithms-and-data-structures/
https://javascript.info/
https://developer.mozilla.org/en-US/docs/Web
https://css-tricks.com/
https://www.w3schools.com/html/
https://www.w3schools.com/css/

Prototype vs Property

Module 1: NodeJS and NPM

Prototype vs Property

Module 1: NodeJS and NPM

Learning Goals

• You should already know some JavaScript, soft reboot

• Search and install NodeJS packages from NPM

• What is the package.json file

• The node_modules directory

• Load packages into NodeJS programs

• Requiring and exporting local files

⚫ Node.JS was invented in 2009 by Ryan Dahl and
other developers working at Joyent

⚫ Combination of Google's V8 JavaScript engine, an
event loop, and a low-level I/O API

⚫ npm, the node package manager, in 2011

⚫ Versions: 0.10, 0.12, 4.0 … 16.0!

Node.JS

⚫ Node.JS was invented in 2009 by Ryan Dahl and
other developers working at Joyent

⚫ Combination of Google's V8 JavaScript engine, an
event loop, and a low-level I/O API

⚫ npm, the node package manager, in 2011

⚫ Versions: 0.10, 0.12, 4.0 … 16.0!

Node.JS
I was tired of
Node and I

create Deno

https://deno.land/

Prototype vs Property

Module 1: References

• https://nodejs.org/en/

• https://www.npmjs.com/

• https://docs.npmjs.com/cli/v6/configuring-npm/package-json

• https://www.geeksforgeeks.org/node-js-modules/

https://nodejs.org/en/
https://www.npmjs.com/
https://docs.npmjs.com/cli/v6/configuring-npm/package-json
https://www.geeksforgeeks.org/node-js-modules/

Prototype vs Property

Picture source

Module 2: Asynchronous Code

https://codeburst.io/asynchronous-adventures-with-node-js-5c7463970efd

Prototype vs Property

Module 2: Asynchronous Code

Learning Goals

• Writing async code with:
• callbacks
• promises,
• async/await pattern

• Understanding event-listeners in the browser

• Understanding functions: timeouts, arrow functions, anonymous, self-executing

• Use a real-world REST API to fetch data programmatically with fetch and axios

Prototype vs Property

Picture source

Asynchronous Code

https://johnpapa.net/async-comparisons/

Prototype vs Property

Picture source

Asynchronous Code

https://johnpapa.net/async-comparisons/

Prototype vs Property

Callbacks

Callbacks are functions that are passed as parameters to another function.

function contactServer(payload, callback) {

// Do something.

// Then call the callback.

}

Is callback execution necessarily
asynchronous?

Prototype vs Property

Callbacks

Callbacks are functions that are passed as parameters to another function.

function contactServer(payload, callback) {

// Do something.

// Then call the callback.

}

NO, it can also be sequential
Is callback execution necessarily
asynchronous?

Prototype vs Property

What is Asynchronous Code?

Is this asynchronous?

Consider the execution flow on the left

Img Source

http://mariechatfield.com/tutorials/explanations/asynchronous-code.html

Prototype vs Property

What is Asynchronous Code?

Is this asynchronous?

Consider the execution flow on the left

NO, it is sequential. The context of
execution switches from one function to
another, which runs until the end, then it
returns to the original calling function.

Img Source

http://mariechatfield.com/tutorials/explanations/asynchronous-code.html

Prototype vs Property

What is Asynchronous Code?

Is this asynchronous?

Img Source

http://mariechatfield.com/tutorials/explanations/asynchronous-code.html

Prototype vs Property

What is Asynchronous Code?

Is this asynchronous?

YES, it is! The context of execution switches from
one function to another, it returns immediately to
the original calling function, while the called
function runs in parallel.

Img Source

http://mariechatfield.com/tutorials/explanations/asynchronous-code.html

Prototype vs Property

What is Asynchronous Code?

Img Source

Is this asynchronous?

But how does the original function access
the return value from the other function?

YES, it is! The context of execution switches from
one function to another, it returns immediately to
the original calling function, while the called
function runs in parallel.

http://mariechatfield.com/tutorials/explanations/asynchronous-code.html

Prototype vs Property

Callbacks

Callbacks are functions that are passed as parameters to another function.

function contactServer(payload, callback) {

// Do something.

// Then call the callback.

}

Prototype vs Property

Callbacks

Callbacks are functions that are passed as parameters to another function.

function contactServer(payload, callback) {

// Sequential (synchronous) execution.

// if (DATA_IN_CACHE) {

callback(DATA_IN_CACHE);

}

}

Prototype vs Property

Callbacks

function contactServer(payload, callback) {

// Sequential (synchronous) execution.

// if (DATA_IN_CACHE) {

callback(DATA_IN_CACHE);

}

// Asynchronous execution.

else {

fetch(SERVER_ADDRESS, callback);

}

}

Prototype vs Property

Callbacks

function contactServer(payload, callback) {

// Sequential (synchronous) execution.

// if (DATA_IN_CACHE) {

callback(DATA_IN_CACHE);

}

// Asynchronous execution.

else {

fetch(SERVER_ADDRESS, callback);

}

}

The callback function may executed
synchronously or asynchronously within
the same function.

Prototype vs Property

Callbacks

function contactServer(payload, callback) {

// Sequential (synchronous) execution.

// if (DATA_IN_CACHE) {

callback(DATA_IN_CACHE);

}

// Asynchronous execution.

else {

fetch(SERVER_ADDRESS, callback);

}

}

The callback function may executed
synchronously or asynchronously within
the same function.
When multiple callback calls are nested,
it originates the Hadouken code.

https://en.wikipedia.org/wiki/Hadouken

Prototype vs Property

Simplest, Really Common Callback

setTimeout(function() {

console.log('I am alive!);

}, 2000);

Prototype vs Property

Simplest, Really Common Callback

setTimeout(function() {

console.log('I am alive!);

}, 2000);

It has no name, it is an
anonymous function

What is the name
of this callback?

Prototype vs Property

Simplest, Really Common Callback

setTimeout(function() {

console.log('I am alive!);

}, 2000);

It has no name, it is an
anonymous function

What is the name
of this callback?

Could it have a
name?

Yes, but what for? This
function is used and
thrown away.

Prototype vs Property

Simplest, Really Common Callback

setTimeout(function() {

console.log('I am alive!);

}, 2000);

It has no name, it is an
anonymous function

What is the name
of this callback?

Could it have a
name?

Yes, but what for? This
function is used and
thrown away.

What is the advantage
of being anonymous?

Does not pollute the namespace.
Slightly better performance
because of lower memory load.
You type less.

Prototype vs Property

Simplest, Really Common Callback

setTimeout(function() {

console.log('I am alive!);

}, 2000);

// Arrow function equivalent.

Prototype vs Property

Simplest, Really Common Callback

setTimeout(function() {

console.log('I am alive!);

}, 2000);

// Arrow function equivalent.

setTimeout(() => console.log('I am alive'), 2000);

Prototype vs Property

Most Common Callbacks: Event Listeners

Events are actions or occurrences happening in the system in which you are

programming (e.g., Node.JS or Browser)

The system produces or "fires" a signal of some kind when an event occurs,

A mechanism is in place by which an event can be "caught" when the event occurs
(that is, some code running).

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events

Prototype vs Property

Common Events in The Browser

The user clicks a certain element.
The user hovers the cursor over a certain element.
The user chooses a key on the keyboard.
The user resizes or closes the browser window.
A web page finishes loading.
A form is submitted.
A video is played, paused, or finishes.
An error occurs.

Prototype vs Property

https://mdn.github.io/learning-area/javascript/building-blocks/events/random-color-
eventhandlerattributes.html

https://mdn.github.io/learning-area/javascript/building-blocks/events/random-color-eventhandlerattributes.html

Prototype vs Property

How to Define Event Listeners

Get a reference to an element on the page (or the page itself)

Select the event you want to listen to

Add a function to be executed when the event is fired

Shake well.

Prototype vs Property

How to Define Event Listeners

Get a reference to an element on the page (or the page itself)

Select the event you want to listen to

Add a function to be executed when the event is fired

Shake well.

As you might expect, JavaScript has multiple ways of registering event
listeners (also called event handlers)

Prototype vs Property

The Old Way (still valid)

const btn = document.querySelector('button');

btn.onclick = function() {

};

Prototype vs Property

The Old Way (still valid)

const btn = document.querySelector('button');

btn.onclick = function() {

const rndCol =

`rgb(random(255), random(255), random(255))`;

document.body.style.backgroundColor = rndCol;

};

https://www.w3schools.com/cssref/func_rgb.asp

https://www.w3schools.com/cssref/func_rgb.asp

Prototype vs Property

The Old Way (still valid)

const btn = document.querySelector('button');

// Removing and event listener on onclick.

btn.onclick = null;

Prototype vs Property

The Modern Way

const btn = document.querySelector('button');

const changeColor = function() {

// Code as before.

};

// Add listener.

btn.addEventListener('click', changeColor);

Notice an important difference!
Before it was "onclick" here is simply "click"

Prototype vs Property

The Modern Way

const btn = document.querySelector('button');

const changeColor = function() {

// Code as before.

};

// Add listener.

btn.addEventListener('click', changeColor);

// Remove it.

btn.removeEventListener('click', changeColor);

Prototype vs Property

Comparison

Event Handler Properties (e.g., onclick) add|RemoveEventListener

Easier to use More complicated to use

Less powerful More powerful: give further options on the
how/when catching the event

Only one event listener allowed Multiple event listeners allowed

If you are using an external framework (e.g., Bootstrap, React, Angular, etc.),
there are good chances to create conflicts with its own event listeners.

First Exercise!

Go to Google.com, open DevTools and change the logo to something else.

Hands On: Messing Around with Google.Com

First Exercise!

Let's manipulate the page elements programmatically:

Hands On: Messing Around with Google.Com

// Locate the HTML element with given id.

let logo = document.getElementById("logo");

// Change one of its attributes (pick any image you like).

a.srcset = "https://nodegame.org/images/Logo_Square_with_dots.png";

// Defines an onclick event-handler.

a.onclick = function() {

// Redirect to a new page.

window.location.href = "https://nodegame.org";

};

If Google shows a special logo, you should check the DOM for the right ID/class.
For instance, this command might be an alternative:

let logo = document.querySelector('.lnXdpd');

Check the id/class assigned to the logo image in the browser's Inspect tab!

First Exercise!

Changes in the Inspector are
immediately reflected on
the page.

For example, if add a rule:

"display: none"

the selected element will be
hidden in the page.

Hands On: Messing Around with Google.Com

First Exercise!

Go to Google.com and manipulate the page elements programmatically:

Hands On: Messing Around with Google.Com

// Locate the HTML element holding with given id.

let logo = document.getElementById("logo");

// Change one of its attributes (pick any image you like).

a.srcset = "https://nodegame.org/images/Logo_Square_with_dots.png";

// Defines an onclick event-handler.

a.onclick = function() {

// Redirect to a new page.

window.location.href = "https://nodegame.org";

};

How to change the image displayed?

First Exercise!

Go to Google.com and manipulate the page elements programmatically:

Hands On: Messing Around with Google.Com

// Locate the HTML element holding with given id.

let logo = document.getElementById("logo");

// Change one of its attributes (pick any image you like).

a.srcset = "https://nodegame.org/images/Logo_Square_with_dots.png";

// Defines an onclick event-handler.

a.onclick = function() {

// Redirect to a new page.

window.location.href = "https://nodegame.org";

};

How to change the image displayed?

DOM objects are glorified JavaScript objects with properties and methods.
The browser reads those properties and displays them accordingly.

First Exercise!

Go to Google.com and manipulate the page elements programmatically:

Hands On: Messing Around with Google.Com

// Locate the HTML element holding with given id.

let logo = document.getElementById("logo");

// Change one of its attributes (pick any image you like).

logo.srcset = "https://nodegame.org/images/Logo_Square_with_dots.png";

// Defines an onclick event-handler.

a.onclick = function() {

// Redirect to a new page.

window.location.href = "https://nodegame.org";

};

Google does thousands of A/B testing, so the exact name of the property
might be slightly different from mine. If not working, try setting srcset to
null, and set the property src.

First Exercise!

Go to Google.com and manipulate the page elements programmatically:

Hands On: Messing Around with Google.Com

// Locate the HTML element holding with given id.

let logo = document.getElementById("logo");

// Change one of its attributes (pick any image you like).

logo.srcset = "https://nodegame.org/images/Logo_Square_with_dots.png";

// Defines an onclick event-handler (anonymous function).

logo.onclick = function() {

// Redirect to a new page.

window.location.href = "https://nodegame.org";

};

Let's do Something Here!

First Exercise!

Go to Google.com and manipulate the page elements programmatically:

Hands On: Messing Around with Google.Com

// Locate the HTML element holding with given id.

let logo = document.getElementById("logo");

// Change one of its attributes (pick any image you like).

logo.srcset = "https://nodegame.org/images/Logo_Square_with_dots.png";

// Defines an onclick event-handler (anonymous function).

logo.onclick = function() {

// Redirect to a new page using the location object.

window.location.href = "https://nodegame.org";

};

Prototype vs Property

List of Events

https://perimeterx.github.io/map-events-website/

All events, by browser. No longer updated 

https://javascript.info/introduction-browser-events

Most common events, and examples.

https://perimeterx.github.io/map-events-website/
https://javascript.info/introduction-browser-events

Prototype vs Property

Picture source

Asynchronous Code

https://johnpapa.net/async-comparisons/

Prototype vs Property

Promises

Promises are a new paradigm to execute callbacks (ES6)

A response to the need of a more principle way to run multiple callbacks

Prototype vs Property

Promises

Promises are a new paradigm to execute callbacks (ES6)

A response to the need of a more principle way to run multiple callbacks

Promises shift some of the complexity at Promise creation to simplify its execution.

Prototype vs Property

Promises

You need to create a Promise with the new operator before using it.

The new operator is used in Object Oriented Programming (OOP) to create a new
instance of a class, that is an object.

let promise = new Promise(…);

Prototype vs Property

Some OOP Terminology

let promise = new Promise(…);

// promise is an instance of the Promise (capital P) class.

// As an instance of big Promise, little promise

// inherits some properties and method from its parent.

// Promise is the constructor method instantiating the

// objects of class Promise.

Prototype vs Property

Back to Promises

Promises are really simple.

- The constructor takes one callback function

let promise = new Promise(function(…) {…});

Prototype vs Property

Back to Promises

Promises are really simple.

- The constructor takes one callback function
- This callback function takes two input parameters

let promise = new Promise(function (a, b) {…});

Prototype vs Property

Back to Promises

Promises are really simple.

- The constructor takes one callback function
- This callback function takes two input parameters
- These input parameters are also callback functions, usually called resolve and reject

let promise = new Promise(function (resolve, reject) {…});

Prototype vs Property

Back to Promises

Promises are really simple.

- The constructor takes one callback function
- This callback function takes two input parameters
- These input parameters are also callback functions, usually called resolve and reject

let promise = new Promise(function (resolve, reject) {…});

Your task as a developer, is to write the logic executing the resolve callback on
success, and the reject callback on failure.

Prototype vs Property

A Promise is Created

After a promised is created you can call it elegantly

let promise = new Promise(function (resolve, reject) {…});

promise

.then(() => console.log('I am a success'));

.catch(() => console.log('I am a failure'));

Prototype vs Property

A Promise is Created

After a promised is created you can call it elegantly

let promise = new Promise(function (resolve, reject) {…});

promise

.then(() => console.log('I am a success'));

.catch(() => console.log('I am a failure'));

Is promise execution necessarily
asynchronous?

Prototype vs Property

A Promise is Created

After a promised is created you can call it elegantly

let promise = new Promise(function (resolve, reject) {…});

promise

.then(() => console.log('I am a success'));

.catch(() => console.log('I am a failure'));

Is promise execution necessarily
asynchronous?

NO, promises are masked
callbacks, hence they can also
be sequential.

Prototype vs Property

Let's Promisify Our Previous Callback

function contactServer(payload, callback) {

// Sequential (synchronous) execution.

// if (DATA_IN_CACHE) {

callback(DATA_IN_CACHE);

}

// Asynchronous execution.

else {

fetch(SERVER_ADDRESS, callback);

}

}

Prototype vs Property

Let's Promisify Our Previous Callback

let promise = new Promise(function (resolve, reject) {

});

Prototype vs Property

Let's Promisify Our Previous Callback

let promise = new Promise(function (resolve, reject) {

// if (DATA_IN_CACHE) {

resolve(DATA_IN_CACHE);

}

//

else {

fetch(SERVER_ADDRESS, function(res) {

if (res.error) reject(res);

else resolve(res);

});

}

});

Prototype vs Property

Picture source

Asynchronous Code

https://johnpapa.net/async-comparisons/

Prototype vs Property

Async/Await

The await/async pattern is so called "sugar coating" over the Promise syntax

It means that it makes writing code involving promises easier and faster.

You don't even realize you are writing a Promise!

Prototype vs Property

Async/Await

The await/async pattern is so called "sugar coating" over the Promise syntax

It means that it makes writing code involving promises easier and faster.

You don't even realize you are writing a Promise!

async function hello() {

return "Hello"

};

ASYNC

Prototype vs Property

Async/Await

The await/async pattern is so called "sugar coating" over the Promise syntax

It means that it makes writing code involving promises easier and faster.

You don't even realize you are writing a Promise!

async function hello() {

return "Hello"

};

hello().then(res => {

console.log(res)

});

ASYNC

Prototype vs Property

Async/Await

The await/async pattern is so called "sugar coating" over the Promise syntax

It means that it makes writing code involving promises easier and faster.

You don't even realize you are writing a Promise!

async function hello() {

return "Hello"

};

hello().then(res => {

console.log(res)

});

let result = await promise;

ASYNC AWAIT

Prototype vs Property

Async/Await

The await/async pattern is so called "sugar coating" over the Promise syntax

It means that it makes writing code involving promises easier and faster.

You don't even realize you are writing a Promise!

async function hello() {

return "Hello"

};

hello().then(res => {

console.log(res)

});

let result = await promise;

ASYNC AWAIT

CAVEATS:
- You need to have a promise to begin with
- Works only inside an async function.

Prototype vs Property

// We must be inside an async function

let hello = async () => {

// We must have a promise.

let promise = new Promise((resolve, reject) => {

setTimeout(() => resolve("Hello"), 1000);

});

// We can finally use await.

let word = await promise;

console.log(word);

};

hello();

Having to create:
- a wrapper function, and
- a promise

in order to use await is a bit cumbersome

However, if you have a method that already
returns a promise, it's much easier.

Prototype vs Property

Star Wars API

Let's use fetch or axios method in the browser to connect to this API and fetch Star Wars characters!

Prototype vs Property

Fetch Axios (https://axios-http.com)
POST and GET requests POST and GET requests

Native in modern browsers External library

Not supported in older browsers
https://caniuse.com/?search=fetch

Supported in older browsers

Available in Node.js via npm module
node-fetch (slight differences exist)

Available in Node.js via npm module axios

Must explicitly convert response to JSON Automatic JSON conversion

Rejects only if request does not complete Rejects also with error responses (e.g., 404)

No interceptors Interceptors to modify HTTP headers

https://www.pluralsight.com/guides/axios-vs-fetch

https://www.blog.duomly.com/fetch-vs-axios-what-is-better-in-2020/

https://caniuse.com/?search=fetch
https://www.pluralsight.com/guides/axios-vs-fetch
https://www.blog.duomly.com/fetch-vs-axios-what-is-better-in-2020/

Prototype vs Property

Fetch Axios (https://axios-http.com)
POST and GET requests POST and GET requests

Native in modern browsers External library

Not supported in older browsers
https://caniuse.com/?search=fetch

Supported in older browsers

Available in Node.js via npm module
node-fetch (slight differences exist)

Available in Node.js via npm module axios

Must explicitly convert response to JSON Automatic JSON conversion

Rejects only if request does not complete Rejects also with error responses (e.g., 404)

No interceptors Interceptors to modify HTTP headers

Quick prototype, smaller projects Small and large projects

https://www.pluralsight.com/guides/axios-vs-fetch

https://www.blog.duomly.com/fetch-vs-axios-what-is-better-in-2020/

https://caniuse.com/?search=fetch
https://www.pluralsight.com/guides/axios-vs-fetch
https://www.blog.duomly.com/fetch-vs-axios-what-is-better-in-2020/

Prototype vs Property

(async() => {

// Our code in here.

})();

What is this weird construct?

Prototype vs Property

(async() => {

// Our code in here.

})();

What is this weird construct?

It is a self-executing, anonymous function.

Prototype vs Property

(async() => {

// Our code in here.

})();

What is this weird construct?

It is a self-executing, anonymous function.

It is called a closure because a new variables scope separated from the main one.

The difference here is that this is an async space.

Prototype vs Property

(async() => {

// SWAPI details.

const ENDPOINT = "https://swapi.dev/api/";

let query = 'people/1';

// Asynchronous fetch call.

})();

Prototype vs Property

(async() => {

// SWAPI details.

const ENDPOINT = "https://swapi.dev/api/";

let query = 'people/1';

// Asynchronous fetch call.

const res = await fetch(ENDPOINT + query);

console.log(res);

})();

Prototype vs Property

(async() => {

// SWAPI details.

const ENDPOINT = "https://swapi.dev/api/";

let query = 'people/1';

// Asynchronous fetch call.

const res = await fetch(ENDPOINT + query);

console.log(res);

})();

Doesn't look good?
The response object from fetch is NOT the JSON response body.
It is the entire HTTP response.
We need to extract the JSON body with the asynchronous .json() method, which
returns a promise.

Prototype vs Property

(async() => {

// SWAPI details.

const ENDPOINT = "https://swapi.dev/api/";

let query = 'people/1';

// Asynchronous fetch call.

const res = await fetch(ENDPOINT + query);

console.log(res);

// Asynchronous parsing into JSON.

const user = await res.json();

console.log('We got ASYNC/AWAIT: ', user.name);

})();

Prototype vs Property

(async() => {

// SWAPI details.

const ENDPOINT = "https://swapi.dev/api/";

let query = 'people/1';

// Asynchronous fetch call.

const res = await fetch(ENDPOINT + query);

console.log(res);

// Asynchronous parsing into JSON.

const user = await res.json();

console.log('We got ASYNC/AWAIT: ', user.name);

})(); Nice, but what if an error occurs while fetching?
How to handle errors with async/await?

Prototype vs Property

(async() => {

// SWAPI details.

const ENDPOINT = "https://swapi.dev/api/";

let query = 'people/1';

// Asynchronous fetch call.

const res = await fetch(ENDPOINT + query);

console.log(res);

// Asynchronous parsing into JSON.

const user = await res.json();

console.log('We got ASYNC/AWAIT: ', user.name);

})(); Nice, but what if an error occurs while fetching?
How to handle errors with async/await? Use Try-and-Catch blocks.

Prototype vs Property

(async() => {

// SWAPI details.

const ENDPOINT = "https://swapi.dev/api/";

let query = 'people/1';

// Asynchronous fetch call.

const json = await axios(ENDPOINT + query);

console.log('We got ASYNC/AWAIT: ', json.data.name);

})();

<script src="https://unpkg.com/axios/dist/axios.min.js"></script>

With axios

data under json.data

JSON automatically parsed

Library needs to be imported.

Prototype vs Property

Test APIs

• https://github.com/public-apis/public-apis

https://github.com/public-apis/public-apis

Prototype vs Property

References

• https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous

• https://javascript.info/async

• https://javascript.info/introduction-browser-events

• https://perimeterx.github.io/map-events-website/
•

• https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

• https://swapi.dev

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous
https://javascript.info/async
https://javascript.info/introduction-browser-events
https://perimeterx.github.io/map-events-website/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://swapi.dev/

Prototype vs Property

Module 4: jQuery

Image source

Image source

https://www.reddit.com/r/ProgrammerHumor/comments/8cfkf6/jquery_strikes_again/
https://memegenerator.net/instance/67269490/breaking-screw-it-im-using-jquery

Prototype vs Property

Module 4: jQuery

Learning Goals

• Learn how to import and use jQuery

• Select elements

• Perform simple animations

Prototype vs Property

Module 4: jQuery

• Free and open source JS library to simplify:
- DOM traversal and manipulation,
- event handling,
- CSS animation,
- Ajax requests.

Prototype vs Property

Module 4: jQuery

• Free and open source JS library to simplify:
- DOM traversal and manipulation,
- event handling,
- CSS animation,
- Ajax requests.

• Most widely deployed JS library, 3 to 4 times
more usage than any other JS library

table cut
Source

Retrieved
4 May 2021

https://w3techs.com/technologies/overview/javascript_library

Prototype vs Property

Module 4: jQuery

• Free and open source JS library to simplify:
- DOM traversal and manipulation,
- event handling,
- CSS animation,
- Ajax requests.

• Most widely deployed JS library, 3 to 4 times
more usage than any other JS library

table cut
Source

Retrieved
9 May 2022

https://w3techs.com/technologies/overview/javascript_library

Prototype vs Property

Module 4: jQuery

• Easy to use

• Easy to embed

Prototype vs Property

Module 4: jQuery

• Easy to use

• Easy to embed

But,

• relatively slow

• Not a framework to build large, complex apps, such as Vue,
Angular, or React

Prototype vs Property

jQuery Basics

• jQuery or simply $ object available in the browser after loading library

• The basic idea is to have a very simple syntax:

• $("SELECTOR").method(…);

• Methods can be chained

• $("SELECTOR").method1(…).method2(…);

Prototype vs Property

Selectors (Refresh)

#ID Selects the element with id "ID"

.class: Select the element/s with class "class"

button Selects the element with tag <button>

Prototype vs Property

What is this code doing?

$(document).ready(function(){

$("p").click(function(){

$(this).hide();

});

});

Solution: https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_hide

https://www.w3schools.com/jquery/tryit.asp?filename=tryjquery_hide

Prototype vs Property

What is this code doing?

$(document).ready(function(){

$("p").click(function(){

$(this).hide();

});

});

We now would like to make the disappearing a little less abrupt…how can we do it?

Let 's check the jQuery API: https://api.jquery.com/

Then let's change the code below:

https://api.jquery.com/

Prototype vs Property

Can we do the same with vanilla JS/CSS?

We can just define a CSS class and apply it to the desired element

.fadeout {
opacity: 0 !important;
transition: opacity 0.5s;

}

$(document).ready(function(){

$("p").click(function(){

$(this).addClass('fadeout');

});

});

Is this enough?
The element is still
"displayed", just with
zero opacity

Prototype vs Property

Module 4: References

• https://jquery.com/

• https://github.com/jquery/jquery

• https://www.w3schools.com/jquery/

• https://polyfill.io/

https://jquery.com/
https://github.com/jquery/jquery
https://www.w3schools.com/jquery/
https://polyfill.io/

